Under consideration for publication in Math. Struct. in Comp. Science

A Survey of Modal Logics
Characterising Behavioural Equivalences
for Non-deterministic and Stochastic
Systems

MARCO BERNARDO and STEFANIA BOTTA

Universita di Urbino “Carlo Bo” — Italy
Istituto di Scienze e Tecnologie dell’Informazione

Received 4 July 2006; Revised 9 February 2007

Behavioral equivalences are a means to establish whether computing systems possess the
same properties. The specific set of properties that are preserved by a specific behavioral
equivalence clearly depends on how the system behavior is observed and can usually be
characterized by means of a modal logic. In this paper we consider three different
approaches to the definition of behavioral equivalences — bisimulation, testing, and trace
— applied to three different classes of systems — nondeterministic, probabilistic, and
Markovian — and we survey the nine resulting modal logic characterizations, each of
which stems from the Hennessy-Milner logic. We then compare the nine
characterizations with respect to the logical operators, in order to emphasize differences
across the three approaches to the definition of behavioral equivalences and regularities
within each of the three approaches. In the probabilistic and Markovian cases we also
address the issue of whether the probabilistic and temporal aspects should be treated in
a local or global way and consequently whether the modal logic interpretation should be
qualitative or quantitative.

Contents

1 Introduction
2 Process Calculi
2.1 Nondeterministic Process Calculus
2.2 Probabilistic Process Calculus
2.3 Markovian Process Calculus
3 Behavioral Equivalences
3.1 Exit Probabilities, Exit Rates, and Computations
3.2 Bisimulation Equivalence
3.3 Testing Equivalence
3.4 Trace Equivalence
4 Modal Characterizations of Bisimulation Equivalence

© N O Tt O s W N

— = =
= W O

M. Bernardo and S. Botta 2

4.1 Characterization of Nondeterministic Bisimulation Equivalence 14
4.2 Local Characterization of Probabilistic Bisimulation Equivalence 15
4.3 Local Characterization of Markovian Bisimulation Equivalence 16
5 Modal Characterizations of Testing Equivalence 16
5.1 Characterization of Nondeterministic Testing Equivalence 17
5.2 Global Characterization of Probabilistic Testing Equivalence 17
5.3 Global Characterization of Markovian Testing Equivalence 20
6 Modal Characterizations of Trace Equivalence 22
6.1 Characterization of Nondeterministic Trace Equivalence 22
6.2 Global Characterization of Probabilistic Trace Equivalence 22
6.3 Global Characterization of Markovian Trace Equivalence 24
7 Comparing the Modal Logic Characterizations 26
7.1 Differences across the Approaches 26
7.2 Regularities within the Approaches 26
7.3 Local vs. Global Characterizations 27
7.4 Future Work 28
References 29

1. Introduction

Behavioral equivalences are a means to establish whether computing systems possess the
same properties. Among the numerous approaches to the definition of such behavioral
equivalences (van Glabbeek 2001), three of them have received a particular attention:
bisimulation (Milner 1989), testing (De Nicola and Hennessy 1983), and trace (Hoare
1985). The basic idea behind bisimulation equivalence is to capture whether two systems
are able to mimic each other’s behavior stepwise. In the case of testing equivalence, two
systems are considered to be equivalent if an external observer cannot distinguish between
them, with the only way that the observer has to infer information about the behavior of
a system being to interact with it by means of tests. Trace equivalence directly considers
the computations of the systems taken in isolation, thus abstracting from the branching
points of their behavior.

In the literature we find several variants of these three approaches originally defined
for nondeterministic systems, which take into account additional information about the
probabilistic and temporal aspects of the system behavior. Among them we mention the
probabilistic variants of bisimulation, testing and trace equivalences — see e.g. (Larsen
and Skou 1991; van Glabbeek et al. 1995; Christoff 1990; Cleaveland et al. 1999; Jou and
Smolka 1990) — as well as their Markovian variants — see e.g. (Hillston 1996; Hermanns
2002; Bernardo and Bravetti 2003; Bernardo and Cleaveland 2000; Wolf et al. 2005;
Bernardo 2007).

The specific set of properties that are preserved by a specific behavioral equivalence
clearly depends on how the system behavior is observed and can usually be characterized
by means of a modal logic. In this paper we consider the nine behavioral equivalences
resulting from the combination of the bisimulation, testing and trace approaches with

Modal Logic Characterisations of Behavioural Equivalences: A Survey 3

the nondeterministic, probabilistic and Markovian classes of systems and we present the
nine corresponding modal languages.

The purpose of this paper is to survey in a uniform framework the modal logic charac-
terizations that are known in the literature, and to contribute with some new results for
probabilistic and Markovian testing/trace equivalences. All the nine modal logic char-
acterizations, which stem from the Hennessy-Milner logic (Hennessy and Milner 1985),
are then compared with respect to the logical operators they rely on, in order to em-
phasize differences across the three approaches to the definition of behavioral equiva-
lences and regularities within each of the three approaches. We shall see that the number
of logical operators that are needed tends to diminish as the distinguishing power de-
creases. Furthermore we shall observe that, unlike bisimulation and trace equivalences,
the nondeterministic, probabilistic and Markovian versions of testing equivalence are not
characterized with the same logical operators.

In the probabilistic and Markovian cases we also address the issue of whether the prob-
abilistic and temporal aspects should be treated in a local or global way. According to the
local view, the probabilistic and temporal aspects should decorate the modal operators
and the resulting modal logic should be given the usual qualitative interpretation. By
contrast, in the global view the probabilistic and temporal aspects should be associated
with the overall system computations, so the modal logic syntax should be unchanged
but its interpretation should become quantitative. We shall see that the local view is
appropriate for bisimulation equivalence, while the global view is appropriate for testing
and trace equivalences.

This paper, which is an extended and revised version of (Bernardo and Botta 2006), is
organized as follows. In Sect. 2 we introduce three process calculi, which generate all the
nondeterministic, probabilistic and Markovian finite-state processes with as few operators
as possible. In Sect. 3 we recall the bisimulation, testing, and trace approaches to the
definition of behavioral equivalences, by showing for each of them the nondeterministic
version, the probabilistic version, and the Markovian version. In Sect. 4, 5, and 6 we
present the modal logic characterizations of the nine resulting behavioral equivalences.
Finally, in Sect. 7 we compare the nine modal logic characterizations with respect to the
logical operators they rely on, then we conclude by mentioning some future work.

2. Process Calculi

In this section we introduce a nondeterministic process calculus, a probabilistic process
calculus, and a Markovian process calculus, which generate all the nondeterministic,
probabilistic and Markovian finite-state processes with as few operators as possible: the
null term, the action prefix operator, the alternative composition operator, and recursion.
For each calculus we shall present the syntax and the structural operational semantics.
As far as actions are concerned, in the following we denote by Name the set of the action
names and we assume that all the actions are observable.

M. Bernardo and S. Botta 4

2.1. Nondeterministic Process Calculus

In the nondeterministic process calculus (NPC for short) the choice among all the actions
that are simultaneously enabled at the same state is nondeterministic. We denote by
Actn = Name the set of the actions of NPC.

Definition 2.1. The set of the process terms of NPC is generated by the following
syntax:

Pu=0|aP|P+P|A|

where 0 is the null term, a € Actn, and A is a process constant defined through the

(possibly recursive) equation A £ P. We denote by Pn the set of the closed and guarded
process terms of NPC. [|

The semantics for NPC can be defined in the usual operational style. As a consequence,
the behavior of each process term is given by a transition system, whose states correspond
to process terms and whose transitions are labeled with actions. Observed that the null
term 0 cannot execute any action — hence the corresponding labeled transition system
is just a state with no transitions — we now provide the semantic rules for the various
operators of NPC:

— Action prefix: a.P can execute action a and then behaves as term P:

aP—yP

— Alternative composition: P; + P, behaves as either P; or P, depending on whether
Py or P, executes an action first:

P1 LNPI Pg L’NP/

P4+ Py—y P P4+ Py— P

— Process constant: A behaves as the right-hand side process term in its defining equa-
tion:

P——\yP AP

AL)NP/

Modal Logic Characterisations of Behavioural Equivalences: A Survey 5

2.2. Probabilistic Process Calculus

In the probabilistic process calculus (PPC for short) every action has a probability as-
sociated with it, hence it is represented as a pair composed of the name of the ac-
tion and the probability of the action. As a consequence, the choice among all the ac-
tions that are simultaneously enabled at the same state is probabilistic. We denote by
Actp = Name x R 1) the set of the actions of PPC. In order to ensure that the prob-
abilities of the actions enabled at any non-deadlocked state sum up to 1, we replace the
action prefix operator and the binary alternative composition operator with a set of n-ary
guarded alternative composition operators, with n ranging over the whole N+ .

Definition 2.2. The set of the process terms of PPC is generated by the following
syntax:

P 32:Q| Z <ai,pi>.Pi | A
i€l

where I is a non-empty finite index set, <a;, p;> € Actp foralli € I, and), p; = 1.
We denote by Pp the set of the closed and guarded process terms of PPC. [|

The semantics for PPC can be defined in the usual operational style, provided that
the multiplicity of the transitions is taken into account. The reason is that idempotency
(i.e. P+ P = P) no longer holds when moving from nondeterministic processes to prob-
abilistic ones. As an example, a term like <a, 0.5>.P + <a, 0.5>.P cannot be equated to
<a,0.5>.P, as we have to take into account the fact that there are two 0.5-probability
transitions both labeled with a and reaching P, not only one. Here are the semantic rules
for generating labeled multitransition systems for PPC:

— Probabilistic guarded alternative composition:

@i;Pi .
> <aiy,pi>Pi——pP icl
el

— Process constant:

a,p

PP A2P

a,p
A——p P

2.3. Markovian Process Calculus

In the Markovian process calculus (MPC for short) every action is durational, hence
it is represented as a pair composed of the name of the action and the rate of the
exponential distribution quantifying the duration of the action. The choice among all

M. Bernardo and S. Botta 6

the actions that are simultaneously enabled at the same state is governed by the race
policy. As a consequence, the execution probability of each action is proportional to
its rate and the average sojourn time in the state is quantified by an exponentially
distributed random variable whose rate is the sum of the rates of the actions. We denote
by Acty = Name x Rsq the set of the actions of MPC.

Definition 2.3. The set of the process terms of MPC is generated by the following
syntax:

P:u=0|<a,A>.P|P+P|A|

where <a, \> € Acty;. We denote by Py the set of the closed and guarded process terms
of MPC. [}

Similarly to PPC, idempotency no longer holds and the multiplicity of the transitions
has to be taken into account. As an example, a term like <a,4.6>.P + <a,4.6>.P is not
equivalent to <a, 4.6>.P but to <a, 9.2>.P, because rates sum up due to the race policy.
Here are the semantic rules for MPC:

— Exponentially timed action prefix:

a,\
<a > P P

— Alternative composition:

a,\ a,\
P——\ P Py——\ P
a,\ a,\
P1—|—P2—>MP/ P1—|—P2—>MP/
— Process constant:
a,\

P, P A2P

a,\
A——y P’

3. Behavioral Equivalences

In this section we recall the three major approaches to the definition of behavioral equiva-
lences: bisimulation, testing, and trace. For each of the three approaches, we shall present
the nondeterministic version, the probabilistic version, and the Markovian version. The

Modal Logic Characterisations of Behavioural Equivalences: A Survey 7

definition of the nine behavioral equivalences is preceded by the introduction of some
notation that will be used several times in the rest of the paper.

3.1. Exit Probabilities, Exit Rates, and Computations

The exit probability of a probabilistic process term is the probability with which the
process term can execute actions of a given name that lead to a given set of terms.

Definition 3.1. Let P € Pp, a € Name, and C C Pp. The exit probability of P when
executing actions of name a that lead to C'is defined through the following Ry ;)-valued

function:
a,p
| prob(P,a,C) = Y{p € Ry | 3P € 0. P2 P} |
where the summation is taken to be zero whenever its multiset is empty. []

Definition 3.2. Let P € Pp and £ C Name. The conditional exit probability of P with
respect to £ is defined through the following Rjg 1)-valued function:

p’I"ObC(P|(C:) = Z prob(P,a,Pp)
a€f

where prob(P,a, Pp) is called the total exit probability of P with respect to a. [|

The exit rate of a Markovian process term is the rate at which it is possible to leave the
term. We distinguish among the rate at which the process term can execute actions of a
given name that lead to a given set of terms, the total rate at which the process term can
execute actions of a given name, and the total exit rate of the process term. The latter
coincides with the reciprocal of the average sojourn time in the state corresponding to
the process term.

Definition 3.3. Let P € Py, a € Name, and C C Py;. The exit rate of P when
executing actions of name a that lead to C' is defined through the following non-negative
real function:

a,\
rate(P,a,C) = {{ A€ Rso | IP € C.P——n P'|}

where the summation is taken to be zero whenever its multiset is empty. []

Definition 3.4. Let P € Py and £ C Name. The total exit rate of P is defined through
the following non-negative real function:

ratey(P) = Y. rate(P,a,Py)

acName

M. Bernardo and S. Botta 8

while the conditional exit rate of P with respect to £ is defined through the following
non-negative real function:

ratec(P|E) = Y rate(P,a, Py)
acf

where rate(P,a, Py) is called the total exit rate of P with respect to a. [

A computation of a process term is a sequence of transitions that can be executed
starting from the term. The length of a computation is given by the number of transitions
occurring in it. We say that two distinct computations are independent of each other if it
is not the case that one of them is a prefix of the other one. In the following, we denote
by C¢(P) and Z;(P) the multisets of the finite-length computations and independent
computations of process term P. Below we inductively define the trace, the execution
probability, and the average duration of an element of C¢(P).

Definition 3.5. Let P € Py UPp U Py and ¢ € C¢(P). The trace associated with the
execution of ¢ is the sequence of the action names labeling the transitions of ¢, which is
defined by induction on the length of ¢ through the following Name®-valued function:

€ if length(c) =0
a o trace(c) ife=P—" ¢ with P € Py or
trace(c) = a,p
(c) c=P——pc with P € Pp or
a,\
c=P——yc with P € Py
where ¢ is the empty trace. []

Definition 3.6. Let P € Pp U Py and ¢ € C¢(P). The probability of executing c is
the product of the execution probabilities of the transitions of ¢, which is defined by
induction on the length of ¢ through the following R ;j-valued function:

1 if length(c) =0
prob(c) =< P~ prob(c) ife=P lp ¢ with P € Pp
a,\
ﬁt(l’) - prob(c’) if c= P— ¢ with P € Py

We also define the probability of executing a computation of C' as:

prob(C) = > prob(c)

ceC

for all C C Z¢(P). []

Modal Logic Characterisations of Behavioural Equivalences: A Survey 9

Definition 3.7. Let P € Py and ¢ € C¢(P). The average duration of ¢ is the sequence
of the average sojourn times in the states traversed by ¢, which is defined by induction
on the length of ¢ through the following (Rq)*-valued function:

€ if length(c) =0
time(c) = .) . . oa) ,
Wotzme(c) ife=P——nc

where ¢ is the empty average duration. We also define the set of the computations of C
whose average duration is not greater than 6 as:

C<g = {c € C| length(c) < length(8) A
Vi=1,...,length(c). time(c)[i] < 0[i]}

for all C C C¢(P) and 0 € (R~¢)*. []

3.2. Bisimulation FEquivalence

The basic idea behind bisimulation equivalence is to capture whether two process terms
are able to mimic each other’s behavior stepwise. In this section we recall the nondeter-
ministic, probabilistic and Markovian versions of bisimulation equivalence, which have
been originally defined in (Milner 1989; Larsen and Skou 1991; Hillston 1996).

3.2.1. Nondeterministic Bisimulation Equivalence Two nondeterministic process terms
are bisimulation equivalent if they can play a game such that, whenever one of them
executes an action, then the other one can respond by executing the same action so that
the game can go on at the two derivative terms.

Definition 3.8. A relation B C Py X Py is a nondeterministic bisimulation iff, whenever
(P1, Py) € B, then for all actions a € Actn:

— Whenever P; LN P/ for some P € Py, then P, LN P} for some Pj € Py such
that (P{, P;) € B.

— Whenever P, LN P} for some Pj € Py, then P, LN Py for some P € Py such
that (P}, Pj) € B. [

Definition 3.9. Nondeterministic bisimulation equivalence, denoted by ~np, is the
union of all the nondeterministic bisimulations. []

3.2.2. Probabilistic Bisimulation Equivalence In the probabilistic case we can no longer
reason in terms of single transitions and derivatives. Instead, we have to consider the
cumulative probability with which a class of equivalent terms is reached when executing
actions with the same name.

M. Bernardo and S. Botta 10

Definition 3.10. An equivalence relation B C Pp X Pp is a probabilistic bisimulation
iff, whenever (Py, P») € B, then for all action names a € Name and equivalence classes
C e Pp/B:

prob(Py, a,C) = prob(Ps, a,C) u

Definition 3.11. Probabilistic bisimulation equivalence, denoted by ~ppg, is the union
of all the probabilistic bisimulations. []

3.2.3. Markovian Bisimulation Equivalence Similarly to the probabilistic case, in the
Markovian case we have to consider the cumulative rate with which a class of equivalent
terms is reached when executing actions with the same name.

Definition 3.12. An equivalence relation B C Py x Py is a Markovian bisimulation
iff, whenever (Py, P») € B, then for all action names a € Name and equivalence classes
C € Pu/B:

rate(Pr,a,C) = rate(Ps, a,C) u

Definition 3.13. Markovian bisimulation equivalence, denoted by ~yg, is the union
of all the Markovian bisimulations. []

3.3. Testing Equivalence

In the case of testing equivalence two process terms are considered to be equivalent if an
external observer cannot distinguish between them, with the only way that the observer
has to infer information about the behavior of a process term being to interact with
it by means of tests. In this section we recall the nondeterministic, probabilistic and
Markovian versions of testing equivalence, which have been originally defined in (De
Nicola and Hennessy 1983; Christoff 1990; Bernardo and Cleaveland 2000).

3.3.1. Formalization of Test Interaction The most convenient way to represent a test is
through another process term, which interacts with the term to be tested by means of a
parallel composition operator that enforces synchronization on all action names. Since a
test should be conducted in a finite amount of time, for the test formalization we restrict
ourselves to process terms that are finite state and acyclic, hence no recursion is admitted
within the tests. In other words, the state-transition semantic models underlying the tests
must have a finite dag-like structure.

In order to represent the fact that a test is passed or not, each of the terminal nodes of
the dag-like semantic model underlying a test must be suitably labeled so as to establish
whether it is a success or failure state. At the process calculus level, this amounts to
replace 0 with the two zeroary operators “s” (for success) and “f” (for failure). Ambiguous
terms like s + f will be avoided in the test syntax by replacing the action prefix operator
and the binary alternative composition operator with a set of n-ary guarded alternative
composition operators, with n ranging over the whole N+.

In the nondeterministic case, the tests are made out of the same kind of actions that
can occur in the nondeterministic process terms.

Modal Logic Characterisations of Behavioural Equivalences: A Survey 11

Definition 3.14. The set 7y of the nondeterministic tests is generated by the following
syntax:

To=1]s|>Y a.T;
i€l

where [is a non-empty finite index set and a; € Name for all i € [. []

In order to deal with nondeterministic tests, we extend ——y as follows:

a;
S an T Ty iel ‘
el

The following operational rule defines the interaction of P € Py and T € 7y:

PP T T

P|T—xP|T

In the probabilistic and Markovian cases, instead, the tests are made out of passive
actions, each equipped with a weight w € Rsg. The idea is that, in any of its states,
a process term to be tested probabilistically generates the proposal of an action to be
executed among those enabled in that state, then the test reacts by probabilistically
selecting a passive action (if any) with the same name as the proposed one.

Definition 3.15. The set 7g of the reactive tests is generated by the following syntax:

To=1]s]| Y <aj, *y,>.T;
i€l

where [is a non-empty finite index set and a; € Name,w; € R~ for all i € I. []

The only semantic rule for reactive tests is the following:

Qi ¥, .
Z<ai,*wi>.Ti —rT; 1el ‘
el

Definition 3.16. Let T" € 7g and a € Name. The set of the names of the actions
initially enabled by T is defined as follows:

‘ init(T) = {a € Name | 3w € Rso. 3T’ € TR.Tm—*wm T'} ‘

M. Bernardo and S. Botta 12

while the total weight of T" with respect to a is defined as follows:

‘ weight(T,a) = > {lw € Rso | 3T € TR.Ta’—*me’ I ‘

The following operational rule defines the probabilistic generative-reactive interaction
(Bravetti and Aldini 2003) of P € Pp and T € Tg:

a,p A, %*q
P pP T-0RT

a jl . w
) probe (Plinit(T)) weight(T,a)

P|T p P | T

while the following operational rule defines the Markovian generative-reactive interac-
tion (Bernardo and Bravetti 2003) of P € Py and T € Tg:

ax aw
P——\yP T——RT

- w
a7)\'weight(T,a)

P|T———uP|T

Definition 3.17. Let P € Pyand T € Ty, or P € PpUPy and T € Tr. The interaction
system of P and T is process term P || T, where we say that:

— A configuration is a state of the semantic model underlying P || T

— A configuration is successful (resp. failed) iff its test component is “s” (resp. “f”).

— A computation is successful (resp. failed) iff so is its last configuration. A computation
that is neither successful nor failed is said to be interrupted.

We denote by SC(P,T) the multiset of the successful computations of C¢(P || T'). [
Note that SC(P,T) C Z¢(P || T'), because of the maximality of the successful test-driven

computations, and that SC(P,T) is finite, because of the finitely-branching structure of
the considered terms.

3.3.2. Nondeterministic Testing Equivalence Two nondeterministic process terms are
testing equivalent if they have the same capability with respect to the possibility and the
necessity of passing an arbitrary test.

Definition 3.18. Let P € Py and T € 7Ty. We say that:

— P may pass T, written P may T, iff at least one test-driven computation is successful:

SC(P,T) # 0

Modal Logic Characterisations of Behavioural Equivalences: A Survey 13

— P must pass T, written P must T, iff all maximal test-driven computations are suc-
cessful:

SC(P,T)=I:(P|T) []
Definition 3.19. Let P, P, € Py. We say that:
— Py is may-testing equivalent to P, written Py ~7 may P», iff for all nondeterministic
tests T € In:

PymayT <= PomayT
— P is must-testing equivalent to Py, written P; ~r must P2, iff for all nondeterministic
tests T' € In:

Py mustT < Py mustT
— Py is nondeterministic testing equivalent to Ps, written P, ~n1 P, iff:

Pl ~'T,may P2 A Pl ~'T,must P2 u

3.3.3. Probabilistic Testing Fquivalence In the probabilistic case, the possibility and the
necessity of passing tests are subsumed by the probability of passing tests.

Definition 3.20. Let P, P, € Pp. We say that P; is probabilistic testing equivalent to
P, written P; ~pr P, iff for all reactive tests T' € TR:

prob(SC(Py,T)) = prob(SC(P2,T)) u

3.3.4. Markovian Testing Equivalence In the Markovian case, we have to consider the
probability of passing the same tests within a certain average amount of time.

Definition 3.21. Let P, P, € Py. We say that P, is Markovian testing equivalent to
Py, written Py ~yr Py, iff for all reactive tests T € 7r and sequences 6 € (Rsq)* of
average amounts of time:

prob(SC<¢(P1,T)) = prob(SC<¢ (P, T)) [

3.4. Trace Equivalence

Unlike testing equivalence, in the case of trace equivalence we no longer consider tests
that interact with the process terms. Instead, we directly consider the finite-length com-
putations of the process terms taken in isolation, thus abstracting from the branching
points of their behavior. In this section we recall the nondeterministic, probabilistic and
Markovian versions of trace equivalence, which have been originally defined in (Hoare
1985; Jou and Smolka 1990; Wolf et al. 2005).

3.4.1. Formalization of Trace Compatibility A trace is an element of Name®, i.e. a finite-
length sequence of action names. The compatibility of a computation with a trace depends
on whether the computation exhibits the trace or not.

Definition 3.22. Let P € PxUPp U Py, ¢ € Ce(P), and o € Name™. We say that ¢ is
compatible with « iff:

M. Bernardo and S. Botta 14

trace(c) = «
We denote by CC(P,«) the multiset of the finite-length computations of P that are
compatible with a.]

Note that CC(P,«) C Z¢(P), because of the compatibility of the computations with the
same trace «, and that CC(P, «) is finite, because of the finitely-branching structure of
the considered terms.

3.4.2. Nondeterministic Trace Equivalence Two nondeterministic process terms are trace
equivalent if they can execute the same traces.

Definition 3.23. Let P € Py and a € Name®*. We say that P executes «, written
P execute a, iff at least one computation is compatible with a:

CC(P,a) #10 [
Definition 3.24. Let P, P, € Pn. We say that P, is nondeterministic trace equivalent
to Py, written P; ~n1r Ps, iff for all traces a € Name™:

Py execute o <= P, execute « n

3.4.3. Probabilistic Trace Equivalence In the probabilistic case, we have to consider the
probability of executing the same traces.

Definition 3.25. Let P, P> € Pp. We say that P; is probabilistic trace equivalent to
Py, written P, ~p, Ps, iff for all traces o € Name™:

prob(CC(Py, &) = prob(CC(Pa, cv)) [|

3.4.4. Markovian Trace Equivalence In the Markovian case, we have to consider the
probability of executing the same traces within a certain average amount of time.

Definition 3.26. Let P, P> € Py We say that P; is Markovian trace equivalent to Ps,
written P; ~yrye Pa, iff for all traces o € Name™ and sequences § € (Rx)* of average
amounts of time:

prob(CC<g(Pr,a)) = prob(CC<g(Pa,t))]

4. Modal Characterizations of Bisimulation Equivalence

In this section we recall from (Hennessy and Milner 1985; Larsen and Skou 1991; Clark
et al. 1999) the modal logic characterizations of the nondeterministic, probabilistic and
Markovian versions of bisimulation equivalence.

4.1. Characterization of Nondeterministic Bisimulation FEquivalence

Nondeterministic bisimulation equivalence is precisely characterized by the Hennessy-
Milner logic (Hennessy and Milner 1985). This is propositional logic extended with the

Modal Logic Characterisations of Behavioural Equivalences: A Survey 15

so-called diamond operator, which is a modal operator expressing the possibility of per-
forming an action with a given name and reaching a state that satisfies a certain formula.

Definition 4.1. The set of the formulas of the Hennessy-Milner logic (HML) is gener-
ated by the following syntax:

|q§::: true | = | N ¢ | <a>¢|

where a € Name. [|

Definition 4.2. The satisfaction relation = of HML over Py is defined by structural
induction as follows:

P E true
P E -¢ if PJE¢
P ’: ¢1/\¢2 1fP):q/)1andP':¢2
a
P E (a)o if P——N P’ with P’ | ¢ for some P’
|
Theorem 4.3. Let Py, P, € Py. Then:
PlNNBP2<:>(V¢EHMLP1|:¢<:>P2):¢)]

4.2. Local Characterization of Probabilistic Bisimulation Equivalence

Probabilistic bisimulation equivalence is characterized by a probabilistic extension of
HML in which the diamond operator is decorated with a positive real number. This
number expresses a lower bound to the probability of performing an action with a given
name and reaching a state that satisfies a certain formula. Since this number is strictly
positive, an additional modal operator is needed to express the fact that an action having
a given name cannot be executed at all.

Definition 4.4. The set of the formulas of HMLpg is generated by the following syntax:

| ¢ = true [=¢ | d A G| Va | {a)po |

where a € Name and p € Rjg 1.]

M. Bernardo and S. Botta 16

Definition 4.5. The satisfaction relation pp of HMLpp over Pp is defined by struc-
tural induction as follows:

P Epp true
P =pg —¢ if P [Epp ¢
P Epp o1 A2 if P =pg ¢1 and P =pg ¢2
P Epp V., if prob(P,a,Pp) =0
P Epp (a)po if prob(P,a,{P' € Pp | P' Epg ¢}) > p
|
Theorem 4.6. Let Py, P, € Pp. Then:
P1 ~PB P2 <~ (V¢€HMLPB.P1):PB¢<:>P2 ':PB ¢) |

4.3. Local Characterization of Markovian Bisimulation FEquivalence

The modal characterization of Markovian bisimulation equivalence is similar to the pre-
vious one, with the difference that the positive real number decorating the diamond
operator is now interpreted as a rate lower bound rather than a probability lower bound.

Definition 4.7. The set of the formulas of HMLyp is generated by the following syntax:

| ¢ = true | ~¢ | ¢ A G| Va | (a)ro |

where a € Name and A € R+g.]

Definition 4.8. The satisfaction relation yp of HMLypg over Py is defined by struc-
tural induction as follows:

P [Emp true
P Eump ¢ if P FmB ¢
P Eus 1A if P =mB ¢1 and P =np ¢2
P Eus V. if rate(P,a,Py) =0
P }:MB <a>,\¢ if mte(P,a, {Pl S PM | P/ }:MB ¢}) Z A
|
Theorem 4.9. Let P, P, € Py. Then:
P1 ~MB P2 <~ (V(ZS S HMLMB. P1 ’:MB ¢ <~ P2 ':MB d))]

5. Modal Characterizations of Testing Equivalence

In this section we recall from (Hennessy 1985) the modal logic characterization of non-
deterministic testing equivalence, then we provide a modal logic characterization for the
probabilistic and Markovian versions of testing equivalence.

Modal Logic Characterisations of Behavioural Equivalences: A Survey 17

5.1. Characterization of Nondeterministic Testing Equivalence

Nondeterministic testing equivalence is characterized by a restriction of HML in which
negation does not occur. To be more precise, the modal language permits to ask simple
questions after a trace has been executed. Therefore, the syntax of the modal language
has a two-level definition. At the top level we have a modal operator on traces. At the
bottom level we have constant true, logical disjunction, and a restriction of the diamond
operator. Then two satisfaction relations are defined, which express the fact that a process
term may or must satisfy a bottom-level formula after executing a trace.

Definition 5.1. The set of the formulas of HM Ly is generated by the following syntax:

¢ = (o)
p u= true | V| {(a)
where o« € Name® and a € Name. []

Definition 5.2. The may satisfaction relation =N may and the must satisfaction rela-
tion F=NT must of HMLyT over Py are defined by structural induction as follows:

P ENTmay (o) if PL’N P’ with P’ =nt ¢ for some P’
P Enrtaoust ()¢ if P! =xt1 @ for all P’ such that P LN P’

where:
P EnT true
P ExT @1V if P =xt 1 or P =T 2
P Ent (a) if P——y P’ for some P’
|
Theorem 5.3. Let P, P, € Py. Then:
P ~n7 Po <= (V¢ € HMLyt. Py ENT,may @ <= P2 ENT may ¢ A
Pl):NT,must d) < P2):NT,must ¢> u

5.2. Global Characterization of Probabilistic Testing Equivalence

In order to obtain a modal logic characterization of ~pr, it is worth recalling from
(Cleaveland et al. 1999) a fully abstract characterization of probabilistic testing equiva-
lence, which is consistent with the definition of the equivalence itself provided in (Christoff
1990). This fully abstract characterization will allow us to concentrate on a set of canon-
ical reactive tests having a more regular structure than the one of Def. 3.15.

M. Bernardo and S. Botta 18

Definition 5.4. The set Ty of the canonical reactive tests is generated by the following
syntax:

Ti=s|<a,x>T+ >, <bx>f
beE—{a}

where a € Name, £ C Name such that a € £, and the summation is absent whenever

E—{a} =0. |

Theorem 5.5. Let Py, P, € P,. Then Py ~pr P; iff for all T' € Ty ¢:
prob(SC(P1,T)) = prob(SC(P,,T)) [

In each of its states, a non-trivial canonical reactive test enables a set £ of passive
actions — representing the environment from the point of view of a process term to be
tested — such that only one of them leads to success, while all the others lead to failure
in one step. Based on this structure, we now define a restriction of HML in which both
negation and logical conjunction are ruled out, while the diamond operator is made
dependent from the environment.

Definition 5.6. The set of the formulas of HMLpyr is generated by the following
syntax:

| o == true | {(al€)d |

where a € Name and £ C Name such that a € £. [|

This modal language, which does not exhibit any probabilistic aspect, is equipped
with a quantitative interpretation function inspired by (Kwiatkowska and Norman 1998),
which establishes the probability with which a process term satisfies a formula.

Definition 5.7. The interpretation function [.Jpr of HMLpyt over Pp is defined by
structural induction as follows:

[true]pr(P) = 1
[al&)ler(P) = > e - Ble(P)

a,p
P——p P!

where the summation is taken to be zero whenever there are no a-transitions departing
from P. [|

We now see that the formulas of HMLpyT have a one-to-one correspondence with the
canonical reactive tests, from which the modal logic characterization result for ~pr will
immediately follow.

Lemma 5.8. For each T € 7 . there exists ¢ € HMLpyT such that for all P € Pp:
[orleT(P) = prob(SC(P,T))

Modal Logic Characterisations of Behavioural Equivalences: A Survey 19

Proof. We proceed by induction on the syntactical structure of 7"
— Let T' = s and take ¢ = true. Then for all P € Pp we immediately derive:
[¢r]pr(P) =1 = prob(SC(P,T))

— Let T = <a,*>.1" + Zbegi{a} <b,x1>.f and take ¢r = (a|E)prs such that ¢p
satisfies the induction hypothesis with respect to T”. In order to avoid trivial cases,
consider P € Pp that can perform a-actions, otherwise:

[¢r]pr(P) =0 = prob(SC(P,T))

Then we have:

[orler(P) =" > poplmre - [orler(P)
P——p P/
and:
pTOb(SC(P, T)) = GZ m . pTOb(SC(P/,T/))
P——p P’

where prob.(P|E) = prob,(Plinit(T)). By the induction hypothesis, for all P’ reach-
able from P via an a-transition we have:
[¢r/]pr(P’) = prob(SC(F',T"))

from which the result follows. [|

Lemma 5.9. For each ¢ € HMLpwyt there exists Ty, € 7r ¢ such that for all P € Pp:
prob(SC(P,Ty)) = [¢lpr(P)
Proof. We proceed by induction on the syntactical structure of ¢:

— Let ¢ = true and take Ty =s. Then for all P € Pp we immediately derive:
prob(SC(P,Ty)) = 1 = [¢]pr(P)

— Let ¢ = (a|€)¢" and take Ty, = <a,*1>Ty + D e g4 <b,*1>.f such that Ty
satisfies the induction hypothesis with respect to ¢’. In order to avoid trivial cases,
consider P € Pp that can perform a-actions, otherwise:

prob(SC(P,Ty)) = 0 = [¢]er(P)

Then we have:
prob(SC(P.Ty)) = > sapplmryy * Prob(SC(FP Ty))
J Y
and:
[ler(P) = X modmre - [@1er(P)
PP

where prob.(P|init(Ty)) = prob,(P|E). By the induction hypothesis, for all P’ reach-
able from P via an a-transition we have:

prob(SC(P', Ty)) = [¢']pr (P)

from which the result follows. []

M. Bernardo and S. Botta 20

Theorem 5.10. Let P, P, € Pp. Then:
Py ~pr Py <= V¢ € HMLpunr. [¢]pT(P1) = [¢]pT(F2)
Proof. The result is a straightforward consequence of Thm. 5.5 and of the bijective

correspondence between canonical reactive tests and formulas of HMLpyT established
by Lemmas 5.8 and 5.9. [}

5.3. Global Characterization of Markovian Testing Fquivalence

Similarly to the probabilistic case, in order to derive a modal logic characterization of
~mt, we recall from (Bernardo and Cleaveland 2000) a fully abstract characterization of
Markovian testing equivalence, which again is based on the canonical reactive tests.

Theorem 5.11. Let P;, P, € Py. Then Py ~yr Po iff for all T € T . and 6 € (Rs¢)™:
prob(SC<g(Py,T)) = prob(SC<¢ (P, T)) u

The modal language for ~yr is the same as for ~pr, i.e. HMLpyrT, but its quantitative
interpretation is different as it has to take into account the temporal aspects as well. What
has now to be computed is in fact the probability with which a process term satisfies a
formula within a given average amount of time.

Definition 5.12. The interpretation function [.Jpr of HMLpyt over Py X (Rsg)* is
defined by structural induction as follows:

[true]mr(P,0) = 1
0 if0=cv
areocerey > O]
[(al€)plur(P,0) =
> e[S (PO if0=tof A
A

a, 1
P—n P’ rate.(P|E) <t

where the summation is taken to be zero whenever there are no a-transitions departing
from P. [|

Like in the probabilistic case, we are able to establish a one-to-one correspondence
between the formulas of HMLpyr and the canonical reactive tests, from which the modal
logic characterization result for ~yr will immediately follow.

Lemma 5.13. For each T' € T . there exists ¢ € HMLpyr such that for all P € Py
and 6 € (Rso)*:
[[¢T]]MT(P7 9) = pT’Ob(SCSQ(P, T))
Proof. We proceed by induction on the syntactical structure of 7"

— Let T = s and take ¢ = true. Then for all P € Py and 6 € (Rsg)* we immediately
derive:

[pr]mr (P, 0) = 1 = prob(SC<o(P,T))

Modal Logic Characterisations of Behavioural Equivalences: A Survey 21

— Let T = <a,*>.1" + Zbegf{a} <b,x1>.f and take ¢r = (a|E)prs such that ¢r
satisfies the induction hypothesis with respect to T”. In order to avoid trivial cases,

consider P € Py that can perform a-actions and § € (R~)* such that § = to6" and
1

ratec(P|E) < t, otherwise:

[¢r]mr(P,0) = 0= prob(SC<¢(P,T))
Then we have:
[erlur(P.0) = X e - o Iur (P, 0)

a,A
P——\ P/

and:
prob(SC<p(P,T)) = > W - prob(SC<e/ (P, T"))

P——y P’

where rate.(P|E) = ratey(P || T). By the induction hypothesis, for all P’ reachable
from P via an a-transition we have:

[¢7/Imr (P, 0") = prob(SC<o (P, T"))

from which the result follows. [|

Lemma 5.14. For each ¢ € HMLpy there exists Ty € Tg such that for all P € Py
and 0 € (Rso)™:

prob(SC<o(P, Ty)) = [¢]mr (P, 0)
Proof. We proceed by induction on the syntactical structure of ¢:

— Let ¢ = true and take Ty = s. Then for all P € Py and 6 € (R>¢)* we immediately
derive:

pT’Ob(scge(P» T¢)) = 1= [¢lur(P,0)

— Let ¢ = (a|l€)¢’ and take Ty = <a,*1>.Ty + Zbegi{a} <b,*1>.f such that Ty
satisfies the induction hypothesis with respect to ¢’. In order to avoid trivial cases,
consider P € Py that can perform a-actions and 6 € (R<g)* such that § = to 6" and

L < t, otherwise:

ratec(P|E)
prob(SC<o(P,Ty)) = 0 = [¢]mr (P, 0)
Then we have:
prob(SC<o(P,Ty)) = ; m - prob(SC<o (P, Tyy))

PP

and:

[Flur(PO) = X e [0 (PL0)

a, A
P ——\ P’

where ratey (P || Ty) = ratec(P|E). By the induction hypothesis, for all P’ reachable
from P via an a-transition we have:
prob(SC<o (P, Tyr)) = [¢'] (P, 6")

from which the result follows. []

M. Bernardo and S. Botta 22

Theorem 5.15. Let P, P> € Py. Then:
Py ~ytr Py <= V¢ € HMLpyr. V0 € (R0)™. [¢]mT(P1,0) = [¢]mr (P2, 0)

Proof. The result is a straightforward consequence of Thm. 5.11 and of the bijective
correspondence between canonical reactive tests and formulas of HMLpyr established
by Lemmas 5.13 and 5.14.]

6. Modal Characterizations of Trace Equivalence

In this section we recall from (van Glabbeek 2001) the modal logic characterization of
nondeterministic trace equivalence, then we provide a modal logic characterization for
the probabilistic and Markovian versions of trace equivalence.

6.1. Characterization of Nondeterministic Trace FEquivalence

Nondeterministic trace equivalence is simply characterized by a restriction of HML in
which neither negation nor logical conjunction occur.

Definition 6.1. The set of the formulas of HMLypyT: is generated by the following
syntax:

| ¢ == true | (a)d |

where a € Name. [|

Definition 6.2. The satisfaction relation Ex1, of HMLnpyTe over Py is defined by
structural induction as follows:

P Enmv true
P Exme {(a)¢ if P LN P’ with P’ =nty ¢ for some P’

Theorem 6.3. Let P, P, € Px. Then:
Py ~ne P <= (V¢ € HMLypume- P Bt ¢ <= P2 e 9) n

6.2. Global Characterization of Probabilistic Trace Equivalence

The logic characterization of probabilistic trace equivalence is based on the same modal
language as before, i.e. HMLypwmTy, with the difference that a quantitative interpretation
like the one of Sect. 5.2 is adopted in order to measure the probability with which a
process term satisfies a formula.

Modal Logic Characterisations of Behavioural Equivalences: A Survey 23

Definition 6.4. The interpretation function [.]Jpty of HMLxpymTy over Pp is defined by
structural induction as follows:

[true]pm(P) = 1
[(a)plpre (P)

> p- e (P)

a,p
P——p P

where the summation is taken to be zero whenever there are no a-transitions departing
from P. [|

We now see that the formulas of HMLypyT: have a one-to-one correspondence with
the traces, from which the modal logic characterization result for ~pr, will immediately
follow.

Lemma 6.5. For each o € Name”™ there exists ¢, € HMLypumTy such that for all P € Pp:
[pa]pr: (P) = prob(CC(P, &))
Proof. We proceed by induction on the length of a:

— Let length(a) = 0, i.e. @ = ¢, and take ¢, = true. Then for all P € Pp we immedi-
ately derive:

[pa]pr:(P) =1 = prob(CC(P, o))

— Let length(a) > 0, say a = a- o/, and take ¢, = (a)po such that ¢, satisfies the in-
duction hypothesis with respect to o/. In order to avoid trivial cases, consider P € Pp
that can perform a-actions, otherwise:

[Pa]pr:(P) = 0 = prob(CC(P, o))
Then we have:

[¢alpe(P) = GZ p - [¢arlpm:(P')
Pt P

and:
prob(CC(P,a)) = >, p-prob(CC(P', "))

a,p
P——p P

By the induction hypothesis, for all P’ reachable from P via an a-transition we have:
B lom (P') = prob(CC(P', ')

from which the result follows. []

Lemma 6.6. For each ¢ € HMLypwT: there exists ay € Name™ such that for all P € Pp:
prob(CC(P, ay)) = [o]pre(P)
Proof. We proceed by induction on the syntactical structure of ¢:

— Let ¢ = true and take ay = €. Then for all P € Pp we immediately derive:
prob(CC(P,ag)) =1 = [¢]p:(P)

M. Bernardo and S. Botta 24

— Let ¢ = (a)¢’ and take oy = a - agr such that oy satisfies the induction hypothesis
with respect to ¢'. In order to avoid trivial cases, consider P € Pp that can perform
a-actions, otherwise:

prob(CC(P, ap)) = 0 = [¢]pm:(P)
Then we have:
prob(CC(P,ag)) = > p-prob(CC(F', ay))
Y
and:
[Plen(P) = X2 p-[¢Tpn(P)
Y
By the induction hypothesis, for all P’ reachable from P via an a-transition we have:
prob(CC(P', agr)) = [¢'lpme (')

from which the result follows. []

Theorem 6.7. Let P, P, € Pp. Then:
Py ~p1y Py <= V¢ € HMLnputy- [¢]pe(P1) = [0]pTe (P2)

Proof. The result is a straightforward consequence of the bijective correspondence
between traces and formulas of HMLypyT, established by Lemmas 6.5 and 6.6. [|

6.3. Global Characterization of Markovian Trace Equivalence

The modal language for ~yTy is the same as for ~pry, i.e. HMLypMTy, with the difference
that the quantitative interpretation has now to measure the probability with which a
process term satisfies a formula within a given average amount of time.

Definition 6.8. The interpretation function [.Jyy of HMLNpymT: over Py X (Rsg)* is
defined by structural induction as follows:

[true]vme (P 0) = 1
0 if0=¢eVv
ratecry > 011
[(a)¢]ure(P,0) =
> #t(P) ol (P, 6) if 6 :lt 00 A
Pii»M P’ W St

where the summation is taken to be zero whenever there are no a-transitions departing
from P. [|

Like in the probabilistic case, we are able to establish a one-to-one correspondence
between the formulas of HMLypye and the traces, from which the modal logic charac-
terization result for ~yp will immediately follow.

Modal Logic Characterisations of Behavioural Equivalences: A Survey 25

Lemma 6.9. For each @ € Name™ there exists ¢, € HMLypymT: such that for all P € Py
and 6 € (Rso)™*:

[$alre(P,0) = prob(CC<q(P, ax))
Proof. We proceed by induction on the length of a:

— Let length(a) = 0, i.e. @ = ¢, and take ¢, = true. Then for all P € Py and
0 € (Rx0)* we immediately derive:

[Palvre (P, 0) =1 = prob(CC<y(P,))

— Let length(a) > 0, say o = a- o/, and take ¢, = (a)do such that ¢, satisfies the in-
duction hypothesis with respect to /. In order to avoid trivial cases, consider P € Py
that can perform a-actions and 6 € (Rs)* such that § = t o6 and <t
otherwise:

1
ratey (P)

[[¢aHMTr(Pa 0) = 0 = pT’Ob(CCSQ(P, Oé))

Then we have:

Balun(P.O) = ¥ aiep - [falun(P,6)
PP
and:
prob(CC<y(P,) = >, #t(l’) - prob(CC<o/ (P, &)
a, A

Py P

By the induction hypothesis, for all P’ reachable from P via an a-transition we have:
[$aInme (P, 6") = prob(CC<q (P, "))

from which the result follows. [|

Lemma 6.10. For each ¢ € HMLypyy there exists ay € Name™ such that for all
PePyand € (Rso)*:

prob(CC<o(P, ap)) = [plvre (P, 0)
Proof. We proceed by induction on the syntactical structure of ¢:

— Let ¢ = true and take ay = . Then for all P € Py and 6 € (R>()* we immediately
derive:

p?"Ob(CCSQ(P, Oé¢)) =1= |I¢]]MTY(P7 0)

— Let ¢ = (a)¢’ and take oy = a - agr such that ay satisfies the induction hypothesis
with respect to ¢’. In order to avoid trivial cases, consider P € Py that can perform
a-actions and 6 € (Rs¢)* such that § =¢ 06" and m < t, otherwise:

prob(CC<o(P, ay)) = 0 = [¢]mm: (P, 0)
Then we have:
prob(CC<o(Pag)) = X apipy - Prob(CC<o (P)

a.x
P— P’

and:

M. Bernardo and S. Botta 26

[l (P,0) = X2 ey 19T (P, 6)

P——y P’

By the induction hypothesis, for all P’ reachable from P via an a-transition we have:
prob(CC<p (P', o)) = [¢' I (P, 07)

from which the result follows. []

Theorem 6.11. Let Py, P, € Py. Then:
Py ~yte Pr <= V¢ € HMLxpute- VO € (Rs0)™. [@]mte (P, 0) = [9] v (Po, 0)

Proof. The result is a straightforward consequence of the bijective correspondence
between traces and formulas of HMLypyT, established by Lemmas 6.9 and 6.10. [|

7. Comparing the Modal Logic Characterizations

The modal logic characterizations for the nine behavioral equivalences considered in this
paper are summarized in Fig. 1. On the horizontal axis we have the three approaches
to the definition of behavioral equivalences, while on the vertical axis we have the three
classes of systems.

7.1. Differences across the Approaches

When moving from bisimulation equivalence to trace equivalence, we see from Fig. 1 that
the number of logical operators that are needed tends to diminish, in accordance with
the decreasing distinguishing power of the three approaches. More precisely, in the case
of bisimulation equivalence we have all the logical operators of HML, then negation is
dropped in the case of testing equivalence, and finally logical conjunction is left out as
well in the case of trace equivalence.

7.2. Regularities within the Approaches

The three logical characterizations for nondeterministic, probabilistic and Markovian
bisimulation equivalence basically rely on the same modal language, which is HML.
The only differences are that, in the probabilistic (resp. Markovian) case, the diamond
operator is decorated with a probability (resp. rate) lower bound and, since this lower
bound cannot be zero, an additional modal operator is present to express the fact that
an action cannot be executed at all.

The situation is more varied for testing equivalence. In the nondeterministic case, two
modal operators are needed — one for traces and one for individual actions — together
with logical disjunction. When moving to the probabilistic or Markovian case, all the
previous operators are replaced by a conditional diamond operator.

Finally, the three logical characterizations for nondeterministic, probabilistic and Marko-
vian trace equivalence rely exactly on the same modal language, which comprises only
the constant true and the diamond operator.

Modal Logic Characterisations of Behavioural Equivalences: A Survey 27

true
A M
\a @
true
local - Al P
\a @p
true
Al TN
@

Tr T B

true true

T daDv @ @

true true
M true true
@& | @

Fig. 1. Summary of results

7.3. Local vs. Global Characterizations

For probabilistic and Markovian systems the question arises about how to deal with
the probabilistic and temporal aspects of the computations. There are in principle two
opposite answers. The first one — which we call local — is that such aspects should be
considered at the level of the individual actions occurring in the computations, while the
second one — which we call global — is that they should be considered at the level of the
overall computations.

The answer that is chosen has a deep impact on the syntax and the interpretation
of the modal language. In the local case probabilistic and temporal parameters should
be present in the syntax of the modal operators and the interpretation of the resulting
formulas should be qualitative as usual, in the sense that it should return a truth value. By
contrast, in the global case no probabilistic and temporal parameters should be present
in the syntax but the interpretation of the usual formulas should be quantitative, in the
sense that it should return a number that measures how much a formula is satisfied.

The local view is the one adopted in (Larsen and Skou 1991; Clark et al. 1999) for
the logical characterizations of probabilistic and Markovian bisimulation equivalences,
consistently with the fact that bisimilarity relates systems that behave the same step
by step. The global view, originally proposed in (Kwiatkowska and Norman 1998), has
instead been adopted for the logical characterizations of probabilistic and Markovian test-

M. Bernardo and S. Botta 28

ing/trace equivalences, consistently with the fact that such equivalences take into account
the probabilistic and temporal aspects of the overall, possibly test-driven computations.

We explicitly observe that a local characterization is not possible for probabilistic and
Markovian testing/trace equivalences. As an example, in the probabilistic case one may
think of using modal operators like (a|€),¢ and (a),¢, with p € Rjg 1 being a proba-
bility lower bound. Then e.g. the two probabilistic trace equivalent process terms (with
p1+p2=1):

P = <a,p1>.<b,1>.0+ <a,p2>.<c,1>.0
QR = <a,1>.(<b,p1>.0+ <c¢,p2>.0)
would be distinguished by the following formula:
¢ = (a)p,(b)1 true

which is satisfied by P but not by Q. As another example, in the Markovian case one
may think of using modal operators like (a|€), ¢ and (a), ¢, with ¢ € R+ being an
average time upper bound. Then e.g. the two Markovian trace equivalent process terms:

P = <a, \>.<b,u>.0+4 <a, Aa>.<c,u>.0
QI = <a, A+ A>.(<b,)\1’:})\2 >0+ <c, ﬁ - p>.0)
would be distinguished by the following formula:
¢ = (a) x4 (b)y 1 true
X1 +Xg ' A1 t+Arg T

which is satisfied by P’ but not by @Q’.

7.4. Future Work

As already observed, unlike bisimulation and trace equivalences, in the case of test-
ing equivalence the logical characterizations for the nondeterministic, probabilistic and
Markovian versions comprise different logical operators. It would thus be interesting to
understand whether a more regular pattern can be found for the logical operators char-
acterizing the various versions of testing equivalence.

In (Kwiatkowska and Norman 1998) a modal logic characterization is provided for a
testing equivalence for reactive probabilistic processes. The resulting modal language is
essentially HML without negation, which is then interpreted quantitatively. However,
instead of classical tests & la (De Nicola and Hennessy 1983), the authors consider tests
with copying, in the sense that multiple copies of a process can be taken at any stage
of a test in order to experiment on one copy at a time (Abramsky 1987). Tests with the
copying facility induce equivalences that are at most as coarse as %—bisimilarity (Larsen
and Skou 1991), thus increasing the distinguishing power with respect to classical testing
equivalence.

We conjecture that a suitable restriction of tests with copying may result exactly in
classical testing equivalence a la (De Nicola and Hennessy 1983). We believe that a good
candidate is the restriction considered in (Kwiatkowska and Norman 1998) to ensure
probabilistic soundness, which amounts to impose that the tests that are applied to the
various copies are independent of each other. At the modal language level, this means
that, whenever a conjunction of diamond operators is encountered, the names of the
actions occurring in them must be all different. Should our conjecture be verified, the

Modal Logic Characterisations of Behavioural Equivalences: A Survey 29

nondeterministic, probabilistic and Markovian versions of testing equivalence would be
uniformly characterized by a modal logic given by HML without negation.

References

S. Abramsky (1987), “Observational Equivalence as a Testing Equivalence”, in Theoretical Com-
puter Science 53:225-241.

M. Bernardo (2007), “Non-Bisimulation-Based Markovian Behavioral Equivalences”, to appear
in Journal of Logic and Algebraic Programming.

M. Bernardo and S. Botta (2006), “Modal Logic Characterization of Markovian Testing and
Trace Equivalences”, in Proc. of the 1st Int. Workshop on Logic, Models and Computer Science
(LMCS 2006), ENTCS, Camerino (Italy).

M. Bernardo and M. Bravetti (2003), “Performance Measure Sensitive Congruences for Marko-
vian Process Algebras”, in Theoretical Computer Science 290:117-160.

M. Bernardo and R. Cleaveland (2000), “A Theory of Testing for Markovian Processes”, in
Proc. of the 11th Int. Conf. on Concurrency Theory (CONCUR 2000), LNCS 1877:305-319,
State College (PA).

M. Bravetti and A. Aldini (2003), “Discrete Time Generative-Reactive Probabilistic Processes
with Different Advancing Speeds”, in Theoretical Computer Science 290:355-406.

I. Christoff (1990), “Testing Equivalences and Fully Abstract Models for Probabilistic Processes”,
in Proc. of the Ist Int. Conf. on Concurrency Theory (CONCUR 1990), LNCS 458:126-140,
Amsterdam (The Netherlands).

G. Clark, S. Gilmore, and J. Hillston (1999), “Specifying Performance Measures for PEPA”, in
Proc. of the 5th AMAST Int. Workshop on Formal Methods for Real Time and Probabilistic
Systems (ARTS 1999), LNCS 1601:211-227, Bamberg (Germany).

R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen (1999), “Testing Preorders for Probabilistic
Processes”, in Information and Computation 154:93-148.

R. De Nicola and M. Hennessy (1983), “Testing Equivalences for Processes”, in Theoretical
Computer Science 34:83-133.

R.J. van Glabbeek (2001), “The Linear Time - Branching Time Spectrum I”, in “Handbook of
Process Algebra”, pp. 3-99, Elsevier.

R.J. van Glabbeek, S.A. Smolka, and B. Steffen (1995), “Reactive, Generative and Stratified
Models of Probabilistic Processes”; in Information and Computation 121:59-80.

M. Hennessy (1985), “Acceptance Trees”, in Journal of the ACM 32:896-928.

M. Hennessy and R. Milner (1985), “Algebraic Laws for Nondeterminism and Concurrency”, in
Journal of the ACM 32:137-162.

H. Hermanns (2002), “Interactive Markov Chains”, LNCS 2428.

J. Hillston (1996), “A Compositional Approach to Performance Modelling”, Cambridge Univer-
sity Press.

C.A.R. Hoare (1985), “Communicating Sequential Processes”, Prentice Hall.

C.-C. Jou and S.A. Smolka (1990), “Fquivalences, Congruences, and Complete Aziomatizations
for Probabilistic Processes”, in Proc. of the Ist Int. Conf. on Concurrency Theory (CON-
CUR 1990), LNCS 458:367-383, Amsterdam (The Netherlands).

M.Z. Kwiatkowska and G.J. Norman (1998), “A Testing Equivalence for Reactive Probabilis-
tic Processes”, in Proc. of the 2nd Int. Workshop on Expressiveness in Concurrency (EX-
PRESS 1998), ENTCS 16(2):114-132, Nice (France).

K.G. Larsen and A. Skou (1991), “Bisimulation through Probabilistic Testing”, in Information
and Computation 94:1-28.

M. Bernardo and S. Botta 30

R. Milner (1989), “Communication and Concurrency”, Prentice Hall.

V. Wolf, C. Baier, and M. Majster-Cederbaum (2005), “Trace Machines for Observing
Continuous-Time Markov Chains”, in Proc. of the 3rd Int. Workshop on Quantitative Aspects
of Programming Languages (QAPL 2005), ENTCS 153(2):259-277, Edinburgh (UK).

