
Stochastic Process Algebra:
From an Algebraic Formalism

to an Architectural Description Language

Marco Bernardo1, Lorenzo Donatiello2, and Paolo Ciancarini2

1 Università di Urbino, Centro per l’Appl. delle Sc. e Tecn. dell’Inf.
Piazza della Repubblica 13, 61029 Urbino, Italy

bernardo@sti.uniurb.it
2 Università di Bologna, Dipartimento di Scienze dell’Informazione

Mura Anteo Zamboni 7, 40127 Bologna, Italy
donat, cianca@cs.unibo.it

Abstract. The objective of this tutorial is to describe the evolution of
the field of stochastic process algebra in the past decade, through a pre-
sentation of the main achievements in the field. In particular, the tutorial
stresses the current transformation of stochastic process algebra from a
simple formalism to a fully fledged architectural description language
for the functional verification and performance evaluation of complex
computer, communication and software systems.

1 Introduction

Many computing systems consist of a possibly huge number of components that
not only work independently but also communicate with each other. Examples of
such systems are communication protocols, operating systems, embedded control
systems for automobiles, airplanes, and medical equipment, banking systems,
automated production systems, control systems of nuclear and chemical plants,
railway signaling systems, air traffic control systems, distributed systems and
algorithms, computer architectures, and integrated circuits.

The catastrophic consequences – loss of human lives, environmental damages,
and financial losses – of failures in many of these critical systems have compelled
computer scientists and engineers to develop techniques for ensuring that these
systems are designed and implemented correctly despite of their complexity.
The need of formal methods in developing complex systems is becoming well
accepted. Formal methods seek to introduce mathematical rigor into each stage
of the design process in order to build more reliable systems.

The need of formal methods is even more urgent when planning and im-
plementing concurrent and distributed systems. In fact, they require a huge
amount of detail to be taken into account (e.g., interconnection and synchroniza-
tion structure, allocation and management of resources, real time constraints,
performance requirements) and involve many people with different skills in the
project (designers, implementors, debugging experts, performance and quality

analysts). A uniform and formal description of the system under investigation
reduces misunderstandings to a minimum when passing information from one
task of the project to another.

Moreover, it is well known that the sooner errors are discovered, the less
costly they are to fix. Consequently, it is imperative that a correct design is
available before implementation begins. Formal methods are conceived to allow
the correctness of a system design to be formally verified. Using formal methods,
the design can be described in a mathematically precise fashion, correctness cri-
teria can be specified in a similarly precise way, and the design can be rigorously
proved to meet or not the stated criteria.

Although a number of description techniques and related software tools have
been developed to support the formal modeling and verification of functional
properties of systems, only in recent years temporal characteristics have received
attention. This has required extending formal description techniques by intro-
ducing the concept of time, represented either in a deterministic way or in a
stochastic way.

In the deterministic case, the focus typically is on verifying the satisfaction
of real time constraints, i.e. the fact that the execution of specific actions is
guaranteed by a fixed deadline after some event has happened. As an example,
if a train is approaching a railroad crossing, then bars must be guaranteed to be
lowered on due time.

In the stochastic case, instead, systems are considered whose behavior can-
not be deterministically predicted as it fluctuates according to some probability
distribution. Due to economic reasons, such stochastically behaving systems are
referred to as shared resource systems, because there is a varying number of
demands competing for the same resources. The consequences are mutual in-
terference, delays due to contention, and varying service quality. Additionally,
resource failures significantly influence the system behavior. In this case, the
focus is on evaluating the performance of the systems. As an example, if we
consider again a railway system, we may be interested in minimizing the average
train delay or studying the characteristics of the flow of passengers. The purpose
of performance evaluation is to investigate and optimize the time varying behav-
ior within and among individual components of shared resource systems. This
is achieved by modeling and assessing the temporal behavior of systems, iden-
tifying characteristic performance measures, and developing design rules that
guarantee an adequate quality of service.

The desirability of taking account of the performance aspects of shared re-
source systems in the early stages of their design has been widely recognized [33,
68] and has fostered the development of formal methods for both functional ver-
ification and performance evaluation of rigorous system models. The focus of
this tutorial is on stochastic process algebra (SPA), a formalism proposed in a
seminal work by Ulrich Herzog [46, 47] in the early ’90s, whose growing interest
is witnessed by the annual organization of the international workshop on Pro-
cess Algebra and Performance Modeling (PAPM) and a number of Ph.D. theses
on this subject [48, 38, 70, 67, 63, 54, 62, 59, 40, 53, 10, 31, 24, 29, 22, 25]. With re-

spect to formalisms traditionally used for performance evaluation purposes like
Markov chains (MCs) and queueing networks (QNs) [56, 58], SPA provides a
more complete framework in which also functional verification can be carried
out. With respect to previous formal methods for performance evaluation like
stochastic Petri nets (SPNs) [1], SPA provides novel capabilities related to com-
positionality and abstraction that help system modeling and analysis. The first
part of this tutorial (Sect. 2) is devoted to the presentation of the main results
achieved in the field of SPA since the early ’90s.

Although SPA supports compositional modeling via algebraic operators, this
feature has not been exploited yet to enforce a more controlled way of describ-
ing systems that makes SPA technicalities transparent. By this we mean that
in a SPA specification the basic concepts of system component and connection
are not clearly elucidated, nor checks are available to detect mismatches when
assembling components together. Since nowadays systems are made out of nu-
merous components, in the early design stages it is crucial to be equipped with a
formal specification language that permits to reason in terms of components and
component interactions and to identify components that result in mismatches
when put together. The importance of this activity is witnessed by the growing
interest in the field of software architecture and the development of architectural
description languages (ADLs) [61, 66]. The formal description of the architecture
of a complex system serves two purposes. First and foremost is making avail-
able a precise document describing the structure of the system to all the people
involved in the design, implementation, and maintainance of the system itself.
The second one is concerned with the possibility of analyzing the properties of
the system at the architectural level, thus allowing for the early detection of
design errors. The second part of this tutorial (Sect. 3) is devoted to show how
SPA can easily be transformed into a compositional, graphical and hierchical
ADL endowed with some architectural checks, which can be profitably employed
for both functional verification and performance evaluation at the architectural
level of design.

The tutorial finally concludes with some remarks about future directions in
the field of SPA based ADLs.

2 SPA: Basic Notions and Main Achievements

SPA is a compositional specification language of algebraic nature that integrates
process algebra theory [60, 50, 5] and stochastic processes. In this section we
provide a quick overview of the basic notions about the syntax, the semantics,
and the equivalences for SPA, as well as the main results and applications that
have been developed in the past decade.

2.1 Syntax: Actions, Operators, and Synchronization Disciplines

SPA is characterized by three main ingredients: the actions modeling the system
activities, the algebraic operators whereby composing the subsystem specifica-
tions, and the synchronization disciplines.

An action is usually composed of a type a and an exponential rate λ: <a, λ>
[48, 45, 27]. The type indicates the kind of activity that is performed by the sys-
tem at a certain point, while the rate indicates the reciprocal of the average du-
ration of the activity assuming that the duration is an exponentially distributed
random variable. A special action type, traditionally denoted by τ , designates a
system activity whose functionality cannot be observed and serves for functional
abstraction purposes. In order to increase the expressiveness, in [10] prioritized,
weighted immediate actions of the form <a,∞l,w> are proposed, which are use-
ful to model activities whose timing is irrelevant from the performance viewpoint
as well as activities whose duration follows a phase type distribution. In alter-
native to the durational actions considered so far, in [40] a different view is
taken according to which an action is either an instantaneous activity a or an
exponentially distributed time passage λ.

Several algebraic operators are usually present. The zeroary operator 0 rep-
resents the term that cannot execute any action. The action prefix operator
<a, λ>.E denotes the term that can execute an action with type a and rate λ
and then behaves as term E; in the approach of [40], there are the two action
prefix operators a.E and λ.E. The functional abstraction operator E/L, where
L is a set of action types not including τ , denotes the term that behaves as
term E except that the type a of each executed action is turned into τ whenever
a ∈ L. The functional relabeling operator E[ϕ], where ϕ is a function over action
types preserving observability, denotes a term that behaves as term E except
that the type a of each executed action becomes ϕ(a). The alternative compo-
sition operator E1 + E2 denotes a term that behaves as either term E1 or term
E2 depending on whether an action of E1 or an action of E2 is executed. The
action choice is regulated by the race policy (the fastest one succeeds), so that
each action of E1 and E2 has an execution probability proportional to its rate.
In the approach of [10], immediate actions take precedence over exponentially
timed ones and the choice among them is governed by the preselection policy:
the lower priority immediate actions are discarded, then each of the remaining
immediate actions is given an execution probability proportional to its weight.
In the approach of [40], the choice between two instantaneous activities is non-
deterministic. The parallel composition operator E1 ‖S E2, where S is a set of
action types not including τ , denotes a term that asynchronously executes ac-
tions of E1 or E2 whose type does not belong to S, and synchronously executes
– according to a synchronization discipline – equally typed actions of E1 and
E2 whose type belongs to S. Finally, a constant A denotes a term that behaves
according to the associated defining equation A

∆= E, which allows for recursive
behaviors.

There are many different synchronization disciplines. In [45] the rate of the
action resulting from the synchronization of two actions is the product of the
rates of the two synchronizing actions, where the physical interpretation is that
one rate is the formal rate and the other rate acts like a scaling factor. In [48]
the bounded capacity assumption is introduced, according to which the rate
of an action cannot be increased/decreased due to the synchronization with

another action of the same type. In this approach, patient synchronizations are
considered, i.e. the rate of the action resulting from the synchronization of two
equally typed actions of E1 and E2 is given by the minimum of the two total
rates with which E1 and E2 can execute actions of the considered type, multiplied
by the local execution probabilities of the two synchronizing actions. Following
the terminology of [36], in [26] a generative-reactive synchronization discipline
complying with the bounded capacity assumption is adopted, which is based on
the systematic use of prioritized, weighted passive actions of the form <a, ∗l,w>.
The idea is that the nonpassive actions probabilistically determine the type of
action to be executed at each step, while the passive actions of the determined
type probabilistically react in order to identify the subterms taking part in the
synchronization. In order for two equally typed actions to synchronize, in this
approach one of them must be passive and the rate of the resulting action is
given by the rate of the nonpassive action multiplied by the local execution
probability of the passive action. Finally, in [40] equal instantaneous activities
can synchronize, while time passages cannot. Therefore, when both E1 and E2

can let time pass, in this approach the overall time passage is the maximum of
the two local, exponentially distributed time passages.

2.2 Semantics: Interleaving and Memoryless Property

The semantics for SPA is defined in an operational fashion by means of a set
of axioms and inference rules that formalize the meaning of the algebraic oper-
ators. The result of the application of such rules is a labeled transition system
(LTS), where states are in correspondence with process terms and transitions
are labeled with actions. As an example, the axiom for the action prefix operator

<a, λ>.E
a,λ−−−→E

establishes that term/state <a, λ>.E can evolve into term/state E by perform-
ing action/transition <a, λ>. As another example, the inference rule for the
functional relabeling operator

E
a,λ−−−→E′

E[ϕ]
ϕ(a),λ
−−−→E′[ϕ]

establishes that, whenever term/state E can evolve into term/state E′ by per-
forming action/transition <a, λ>, term/state E[ϕ] can evolve into term/state
E′[ϕ] by performing action/transition <ϕ(a), λ>.

The most complicated inference rules are those for the alternative composi-
tion operator and the parallel composition operator. As far as the alternative
composition operator is concerned, the problem is that, in the case of terms like
<a, λ>.E + <a, λ>.E, the transition generation process must keep track of the
fact that the total rate is 2 · λ by virtue of the race policy. In [48] it is proposed
to use labeled multitransition systems, so that a single transition labeled with
<a, λ> is generated for the term above, which has multiplicity two. In [45], in-
stead, it is proposed to decorate the transitions with an additional distinguishing
label, whose value depends on whether the transitions are due to the left hand

side or the right hand side summand of the alternative compositions. As far as
the parallel composition operator is concerned, the related inference rules must
embody the desired synchronization discipline.

The resulting LTS is an interleaving semantic model, which means that ev-
ery parallel computation is represented through a choice between all the se-
quential computations that can be obtained by interleaving the execution of the
actions of the subterms composed in parallel. As an example, the parallel term
<a, λ>.0 ‖∅<b, µ>.0 and the sequential term <a, λ>.<b, µ>.0+<b, µ>.<a, λ>.0
are given the same LTS up to state names:

λa,

µ

µb,

b, λa,

This is correct from the functional viewpoint, because an external observer,
who is not aware of the structure of the systems represented by the two terms,
sees exactly the same behavior. Moreover, this is correct from the performance
viewpoint as well, by virtue of the memoryless property of the exponential dis-
tribution. For instance, if in the parallel term action <a, λ> is completed before
action <b, µ>, then state 0 ‖∅<b, µ>.0 is reached and the time to the completion
of action <b, µ> is still exponentially distributed with rate µ. In other words,
the interleaving style fits well with the fact that the execution of an exponen-
tially timed action can be considered as being started in the state in which it
terminates.

The LTS produced by applying the operational semantic rules to a pro-
cess term represents the integrated semantic model of the process term. It can
undergo to integrated analysis techniques, like integrated model checking [8]
and integrated equivalence checking (see Sect. 2.3), to detect mixed functional-
performance properties, like the probability of executing a certain sequence of
activities. From the integrated semantic model, two projected semantic mod-
els can be derived. The functional semantic model is a LTS obtained by dis-
carding information about action rates; it can be analyzed through traditional
techniques like model checking [30] and equivalence/preorder checking [28]. The
performance semantic model is a LTS obtained by discarding information about
action types, which happens to be a continuous time Markov chain (CTMC). In
the approach of [26], where prioritized, weighted immediate and passive actions
are considered, the projected semantic models are generated after pruning the
lower priority transitions from the integrated semantic model. Furthermore, the
performance semantic model can be generated only if the integrated semantic
model is performance closed, i.e. has no passive transitions. If this is the case,
the performance semantic model is a CTMC whenever the integrated semantic
model has only exponentially timed transitions or both exponentially timed and
immediate transitions (in which case states having outgoing immediate transi-
tions are removed as their sojourn time is zero). If instead the integrated semantic
model has only immediate transitions, then it is assumed that the execution of

each of them takes one time unit so that the performance model turns out to be
a discrete time Markov chain (DTMC). CTMCs and DTMCs can then be ana-
lyzed through standard techniques [69], mainly based on rewards [52], to derive
performance measures.

2.3 Equivalences: Congruence and Lumpability

SPA terms can be equated on the basis of their functional and performance
behavior. The mostly used method is that, inspired by [57], of the Markovian
bisimulation equivalence [48, 45, 27], based on the ability of two terms of sim-
ulating each other behavior. The idea is that, given an equivalence relation B
over process terms, B is a Markovian bisimulation if, for each pair (E1, E2) ∈ B,
action type a, and equivalence class C of B, the total rate with which E1 reaches
states in C by executing actions of type a is equal to the total rate with which E2

reaches states in C by executing actions of type a. The Markovian bisimulation
equivalence is then defined as the union of all the Markovian bisimulations.

The Markovian bisimulation equivalence enjoys several properties. First, it
is a congruence w.r.t. all the operators as well as recursive constant defining
equations [48, 45, 27, 26]. This ensures substitutivity, i.e. compositionality at the
semantic level: given a term, if any of each subterms is replaced by a Marko-
vian bisimulation equivalent subterm, the new term is Markovian bisimulation
equivalent to the original one. Second, the Markovian bisimulation equivalence
complies with the ordinary lumping for MCs [64], thus ensuring that equivalent
terms possess the same performance characteristics [48, 27]. Third, the Marko-
vian bisimulation equivalence is the coarsest congruence contained in the inter-
section of the bisimulation equivalence [60] and the ordinary lumping, which
means that it is the best Markovian equivalence we can hope for in a bisimu-
lation setting [10]. Fourth, the Markovian bisimulation equivalence has a sound
and complete axiomatization – with <a, λ1>.E + <a, λ2>.E = <a, λ1 + λ2>.E
as typical axiom besides the usual expansion law for the parallel composition op-
erator – which provides an alternative characterization easier to understand [45].

There are some variants of the Markovian bisimulation equivalence. In the
approach of [26], the Markovian bisimulation equivalence is extended to deal with
prioritized, weighted immediate and passive actions. In the approach of [40], a
weak Markovian bisimulation equivalence is defined that abstracts from instan-
taneous τ activities. In [48], a different weak Markovian bisimulation equivalence
is proposed that, in some cases, abstracts from exponentially timed τ actions.
Finally, an alternative view is taken in [17]: following the testing approach of [32],
it is proposed of equating two terms whenever they have the same probability
to pass the same tests within the same average time. The resulting equivalence,
called Markovian testing equivalence, is coarser than the Markovian bisimulation
equivalence, abstracts from internal immediate actions and in some cases from
internal exponentially timed actions, and possesses an alternative characteriza-
tion in terms of extended traces. The congruence property, the axiomatization,
and the relationship with the ordinary lumping for the Markovian testing equiv-
alence are still under investigation. As far as ordinary lumping is concerned, it

is known that in some cases the Markovian testing equivalence produces a more
compact exact aggregation.

2.4 Performance Properties: Algebraic and Logic Approaches

SPA provides the capability of expressing the performance aspects of the be-
havior of complex systems, but not the performance properties of interest. In a
Markovian framework, stationary and transient performance measures (system
throughput, resource utilization, average buffer occupation, mean response time,
etc.) are usually described as weighted sums of state probabilities and transition
frequencies, where state weights are called yield rewards and transition weights
are called bonus rewards [52].

In [13, 12] it is proposed to reuse the classical technique of rewards by ex-
tending the action format to include as many pairs of yield and bonus rewards
as there are performance measures of interest. In this framework, at semantic
model construction time every state is given a yield reward that is equal to the
sum of the yield rewards of the actions it can execute. The Markovian bisimu-
lation equivalence is then extended to take rewards into account, in a way that
preserves compositionality as well as the performance measures of interest.

In [29] an alternative reward based approach is proposed, which associates
certain rewards with those states satisfying certain formulas of a Markovian
modal logic that characterizes the Markovian bisimulation equivalence. This ap-
proach is implemented through a high level language for enquiring about the
stationary performance characteristics possessed by a process term. Such a lan-
guage, whose formal underpinning is constituted by the Markovian modal logic,
relies on the combination of the standard mathematical notation, a notation
based on the Markovian bisimulation equivalence to focus queries directly on
states, and a notation expressing the potential to perform an action of a given
type.

Finally, in [8, 7, 6] it is proposed to directly express the performance prop-
erties of interest through logical formulas, whose validity is verified through an
integrated model checking procedure. The continuous stochastic logic is used in
this framework to inquiry about the value of stationary and transient performa-
bility measures of a system. According to the observation that the progress of
time can be regarded as the earning of reward, a reward based variant of such a
logic is then introduced, where yield rewards are assumed to be already attached
to the states.

2.5 General Distributions

When introducing generally distributed durations in SPA, the memoryless prop-
erty can no longer be exploited to define the semantics in the plain interleaving
style. The reason is that the actions can no more be thought of as being started
in the states where they are terminated; the underlying performance models are
no longer MCs. Therefore, we have to keep track of the sequence of states in
which an action started and continued its execution.

There are several approaches in the literature, among which we mention
below those for which a notion of equivalence (in the bisimulation style) is de-
veloped. In [70] the problem of identifying the start and the termination of an
action is solved at the syntactic level by means of suitable operators that rep-
resent the random setting of a timer and the expiration of a timer, respectively.
Semantic models are infinite LTSs from which performance measures can be
derived via simulation.

In [31] the problem is again solved at the syntax level through suitable clock
related operators, with the difference that the semantic models are finitely rep-
resented through stochastic automata equipped with clocks.

In [25], instead, the problem of identifying the start and the termination of
an action is addressed at the semantic level through the ST approach of [37]. At
semantic model construction time, the start and the termination of each action
are distinguished and kept connected to each other. This framework naturally
supports action refinement, which can be exploited to replace a generally timed
action with a process term composed only of exponentially timed actions result-
ing in a phase type duration that approximates the original duration.

2.6 State Space Explosion

The semantic models for SPA are state based, hence suffer from the state space
explosion problem, i.e. the fact that the size of the state space grows exponen-
tially with the number of subterms composed in parallel. In general, this problem
can be tackled with traditional congruence based techniques. For instance, it is
wise to build the state space underlying a process term in a stepwise fashion,
along the structure imposed by the occurrences of the parallel composition op-
erator, and minimize the state space obtained at every step according to the
Markovian bisimulation equivalence. An alternative strategy is to operate at the
syntactical level using the axioms of the Markovian bisimulation equivalence as
rewriting rules.

More specific techniques to fight the state space explosion problem are present
in the literature. Among them we mention those based on Kronecker represen-
tation [27, 67], time scale decomposition [59], product form solution [39, 65, 49],
symbolic representation [44], stochastic Petri net semantics [14], and queueing
network representation [9].

2.7 Tools and Case Studies

A few tools are under distribution for the modeling and analysis of systems with
SPA. Among them we mention the PEPA Workbench [34], the TIPPtool [55],
and TwoTowers [18].

With such tools several case studies have been conducted, which are con-
cerned with computer systems, communication protocols, and distributed algo-
rithms. Among such case studies we mention those related to CSMA/CD [10],
token ring [10], electronic mail system [41], multiprocessor mainframe [42], in-
dustrial production cell [51], robot control [35], plain old telephone system [43],

multimedia stream [23], adaptive mechanisms for transmitting voice over IP [21,
3], ATM switches [2], replicated web services [11], Lehmann-Rabin randomized
algorithm for dining philosophers [10], and comparison of six mutual exclusion
algorithms [13].

3 Turning SPA into an ADL

SPA supports the compositional modeling of complex systems via algebraic op-
erators. However, this feature has not been exploited yet to enforce an easier
and more controlled way of describing systems that makes SPA technicalities
transparent to the designer. As an example, if a system is made out of a certain
number of components, with SPA the system is simply described as the parallel
composition of a certain number of subterms, each representing the behavior of
a single component, with suitable synchronization sets to represent the compo-
nent interactions. It is desirable to be able to describe the same system at a
higher level of abstraction, where the parallel composition operators and the re-
lated synchronization sets do not come into play. It is more natural to separately
define the behavior of each type of component, to indicate the actions through
which each component type interacts with the others, to declare the instances of
each component type that form the system, and to specify the way in which the
interacting actions are attached to each other in order to make the component
instances interact. This view brings the advantage that the system components
and the component interactions are clearly elucidated, with the synchronization
mechanism being hidden (e.g. interacting actions must not necessarily have the
same type). Another strength is the capability of defining the behavior – possi-
bly parametrized w.r.t. action rates – and the interactions of a component type
just once and subsequently reusing it as many times as there are instances of
that component type in the system. Additionally, it is desirable that composite
systems can be described in a hierachical way, and that a graphical support is
provided for the whole modeling process.

Besides this useful syntactical sugar, checks are needed to detect possible
mismatches when assembling components together and to identify the compo-
nents that cause such mismatches. A typical example is deadlock freedom. If
we put together some components that we know to be deadlock free, we would
like that their combination is still deadlock free. In order to investigate that,
we need suitable checks that allow deadlock to be quickly detected and some
diagnostic information to be obtained for localizing the source of deadlock. As
another example, in order to evaluate the performance of a system, its model
must be performance closed. In this case, a check at the syntax level is helpful
to easily detect and pinpoint possible violations of the performance closure.

In this section we show how SPA can be enhanced to work with at the archi-
tectural level of design. Based on ideas contained in [4, 16, 19, 20], we illustrate
how SPA can be turned into a fully fledged ADL for the modeling, functional
verification, and performance evaluation of complex systems. Recalled that the
transformation is largely independent of the specific SPA, we concentrate on

EMPAgr [26] – which includes prioritized, weighted immediate and passive ac-
tions and the generative-reactive synchronization discipline – and we exhibit the
resulting SPA based ADL called Æmilia [15, 9]. The description of a system with
Æmilia can be done in a compositional, hierachical, graphical and controlled
way. First, we have to define the behavior of the types of components in the
system and their interactions with the other components. The functional and
performance aspects of the behavior are described through a family of EMPAgr

terms or the invocation of the specification of a previously modeled system,
while the interactions are described through actions occurring in the behavior.
Second, we have to declare the instances of each type of component present in
the system and the way in which their interactions are attached to each other
in order to allow the instances to communicate. This process is supported by
a graphical notation. Then, the whole behavior of the system is a family of
EMPAgr terms transparently obtained by composing in parallel the behavior of
the declared instances according to the specified attachments. From the whole
behavior, integrated, functional and performance semantic models can be au-
tomatically derived, which can undergo to the analysis techniques mentioned
in Sect. 2. In addition to that, Æmilia comes equipped with some architectural
checks for ensuring deadlock freedom and performance closure.

3.1 Components and Topology: Textual and Graphical Notations

A description in Æmilia represents an architectural type. As shown in Table 1,
the description of an architectural type starts with the name of the architectural
type and its numeric parameters, which often are values for exponential rates
and weights. Each architectural type is defined as a function of its architectural
element types (AETs) and its architectural topology. An AET is defined as a
function of its behavior, specified either as a family of sequential 1 EMPAgr

terms or through an invocation of a previously defined architectural type, and
its interactions, specified as a set of EMPAgr action types occurring in the be-
havior that act as interfaces for the AET. The architectural topology is specified
through the declaration of a set of architectural element instances (AEIs) rep-
resenting the system components, a set of architectural (as opposed to local)
interactions given by some interactions of the AEIs that act as interfaces for
the whole architectural type, and a set of directed architectural attachments
among the interactions of the AEIs. Every interaction is declared to be an input
interaction or an output interaction and the attachments must respect such a
classification: every attachment must involve an output interaction and an input
interaction of two different AEIs. An AEI can have different types of interactions
(input/output, local/architectural); it must have at least one local interaction.
Every local interaction must be involved in at least one attachment, while ev-
ery architectural interaction must not be involved in any attachment. In order
to allow several AEIs to synchronize, every local interaction can be involved in

1 Including only 0, constants, action prefix operators, and alternative composition
operators.

several attachments provided that no autosynchronization arises, i.e. no chain
of attachments is created that starts from a local interaction of an AEI and
terminates on a local interaction of the same AEI. On the performance side,
we require that, for the sake of modeling consistency, all the occurrences of an
action type in the behavior of an AET have the same kind of rate (exponential,
immediate with the same priority level, or passive with the same priority level)
and that, to comply with the generative-reactive synchronization discipline of
EMPAgr, every chain of attachments contains at most one interaction whose
associated rate is exponential or immediate.

archi type 〈name and numeric parameters〉
archi elem types 〈architectural element types: behaviors and

interactions〉
archi topology

archi elem instances 〈architectural element instances〉
archi interactions 〈architectural interactions〉
archi attachments 〈architectural attachments〉

end

Table 1. Structure of an Æmilia textual description

We now illustrate the textual notation of Æmilia by means of an example
concerning a pipe-filter system. The system is composed of three identical filters
and one pipe. Each filter acts as a service center of capacity two that is subject
to failures and subsequent repairs, which is characterized by a service rate σ,
a failure rate φ, and a repair rate ρ. For each item processed by the upstream
filter, the pipe instantaneously forwards it to one of the two downstream filters
according to the availability of free positions in their buffers. If both have free
positions, the choice is resolved probabilistically based on prouting. The Æmilia
textual description is provided in Table 2. 2 Such a description establishes that
there are three instances F0, F1, and F2 of FilterT as well as one instance P of
PipeT , connected in such a way that the items flow from F0 to P and from P to
F1 or F2. It is worth observing that the system components are clearly elucidated
and easily connected to each other, and that the numeric parameters allow for a
good degree of specification reuse: e.g., the behavior of the filters is defined only
once. Additionally, the accept item input interaction of F0 and the serve item
output interactions of F1 and F2 are declared as being architectural. Therefore,
they can be used for hierchical modeling, e.g. to describe a client-server system
where the server structure is like the pipe-filter organization above.

Æmilia comes equipped with a graphical notation as well, in order to provide
a visual help during the architectural design of complex systems. Such a graphical
notation is based on flow graphs [60]. In a flow graph representing an architec-

2 Wherever omitted, priority levels and weights are taken to be 1.

archi type PipeFilter(exp rate σ0, σ1, σ2, φ0, φ1, φ2, ρ0, ρ1, ρ2;
weight prouting)

archi elem types

elem type FilterT (exp rate σ, φ, ρ)

behavior Filter
∆
= <accept item, ∗>.Filter ′ +

<fail , φ>.<repair , ρ>.Filter

Filter ′
∆
= <accept item, ∗>.Filter ′′ +

<serve item, σ>.Filter +
<fail , φ>.<repair , ρ>.Filter ′

Filter ′′
∆
= <serve item, σ>.Filter ′ +

<fail , φ>.<repair , ρ>.Filter ′′

interactions input accept item
output serve item

elem type PipeT (weight p)

behavior Pipe
∆
= <accept item, ∗>.(<forward item1,∞1,p>.Pipe +

<forward item2,∞1,1−p>.Pipe)
interactions input accept item

output forward item1, forward item2

archi topology

archi elem instances F0 : FilterT (σ0, φ0, ρ0)
F1 : FilterT (σ1, φ1, ρ1)
F2 : FilterT (σ2, φ2, ρ2)
P : PipeT (prouting)

archi interactions input F0.accept item
output F1.serve item, F2.serve item

archi attachments from F0.serve item to P.accept item
from P.forward item1 to F1.accept item
from P.forward item2 to F2.accept item

end

Table 2. Textual description of PipeFilter

0F : FilterT

P : PipeT

1F : FilterT 2F : FilterT

� �� �

� �� �
� �� � � �� �

� �� �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	

accept_item accept_item

serve_itemserve_item

accept_item

serve_item

accept_item

forward_item1 2forward_item

Fig. 1. Flow graph of PipeFilter

tural description in Æmilia, the boxes denote the AEIs, the black circles denote
the local interactions, the white squares denote the architectural interactions,
and the directed edges denote the attachments. As an example, the architec-
tural type PipeFilter can be pictorially represented through the flow graph of
Fig. 1. From a methodological viewpoint, when modeling an architectural type
with Æmilia, it is convenient to start with the flow graph representation of the
architectural type and then to textually specify the behavior of each AET.

3.2 Translation Semantics

The semantics of an Æmilia specification is given by translation into EMPAgr.
While only the dynamic operators (action prefix and alternative composition)
of EMPAgr can be used in the syntax of an Æmilia specification, the more
complicated static operators (functional abstraction, functional relabeling, and
parallel composition) of EMPAgr are transparently used in the semantics of an
Æmilia specification. The translation into EMPAgr is accomplished in two steps.

In the first step, the semantics of all the instances of each AET is defined
to be the behavior of the AET projected onto its interactions. Such a projected
behavior is obtained from the family of sequential EMPAgr terms representing
the behavior of the AET by applying a functional abstraction operator on all the
actions that are not interactions. In this way, we abstract from all the internal
details of the behavior of the instances of the AET. For the pipe-filter system of
Table 2 we have

[[FilterT]] = [[F0]] = [[F1]] = [[F2]] = Filter/{fail , repair}
[[PipeT]] = [[P]] = Pipe

thus abstracting from the internal activities fail and repair .
In the second step, the semantics of an architectural type is obtained by

composing in parallel the semantics of its AEIs according to the specified at-
tachments. Recalled that the parallel composition operator is left associative,

for the pipe-filter system we have
[[PipeFilter]] = [[F0]][serve item 7→ a] ‖∅

[[F1]][accept item 7→ a1] ‖∅
[[F2]][accept item 7→ a2] ‖{a,a1,a2}

[[P]][accept item 7→ a,
forward item1 7→ a1,
forward item2 7→ a2]

The use of the functional relabeling operator is necessary to make the AEIs
interact. As an example, F0 and P must interact via serve item and accept item,
which are different from each other. Since the parallel composition operator
allows only equally typed actions to synchronize, in [[PipeFilter]] each serve item
action executed by [[F0]] and each accept item action executed by [[P]] is relabeled
to an action with the same type a. In order to avoid interferences, it is important
that a be a fresh action type, i.e. an action type occurring neither in [[F0]] nor
in [[P]]. Then a synchronization on a is forced between the relabeled versions of
[[F0]] and [[P]] by means of operator ‖{a,a1,a2}. It is worth reminding that the
transformation of PipeFilter into [[PipeFilter]], which can be analyzed through
the techniques mentioned in Sect 2, is completely transparent to the designer.

The interested reader is referred to [9, 16] for a formal definition of the trans-
lation semantics.

3.3 Architectural Checks

Æmilia is equipped with some architectural checks that the designer can use to
verify the well formedness of the architectural types and, in case a mismatch
is detected, to identify the components that cause it. Most of such checks are
based on the weak bisimulation equivalence [60], which captures the ability of
the functional semantic models of two terms to simulate each other behaviors
up to internal actions.

The first two checks take care of verifying whether the deadlock free AEIs
of an architectural type fit together well, i.e. do not lead to system blocks. The
first check (compatibility) is concerned with architectural types whose topology
is acyclic. For an acyclic architectural type, if we take an AEI K and we consider
all the AEIs C1, . . . , Cn attached to it, we can observe that they form a star
topology whose center is K, as the absence of cycles prevents any two AEIs
among C1, . . . , Cn from communicating via an AEI different from K. It can
easily be recognized that an acyclic architectural type is just a composition of
star topologies. An efficient compatibility check based on the weak bisimulation
equivalence (together with a simple constraint on action priorities) ensures the
absence of deadlock within a star topology whose center K is deadlock free, and
this check scales to the whole acyclic architectural type. The basic condition
to check is that every Ci is compatible with K, i.e. the functional semantics
of their parallel composition is weakly bisimulation equivalent to the functional
semantics of K itself. Intuitively, this means that attaching Ci to K does not alter
the behavior of K, i.e. K is designed in such a way that it suitably coordinates
with Ci.

Since the compatibility check is not sufficient for cyclic architectural types,
the second check (interoperability) deals with cycles. A suitable interoperabil-
ity check based on the weak bisimulation equivalence (together with a simple
constraint on action priorities) ensures the absence of deadlock within a cycle
C1, . . . , Cn of AEIs in the case that at least one of such AEIs is deadlock free.
The basic condition to check is that at least one deadlock free Ci interoperates
with the other AEIs in the cycle, i.e. the functional semantics of the parallel
composition of the AEIs in the cycle projected on the interactions with Ci only
is weakly bisimulation equivalent to the functional semantics of Ci. Intuitively,
this means that inserting Ci into the cycle does not alter the behavior of Ci,
i.e. that the behavior of the cycle assumed by Ci matches the actual behavior of
the cycle. In the case in which no deadlock free AEI is found in the cycle that
interoperates with the other AEIs, a loop shrinking procedure can be used to
single out the AEIs in the cycle responsible for the deadlock.

On the performance side, there is a third check to detect architectural mis-
matches resulting in performance underspecification. This check (performance
closure) ensures that the performance semantic model underlying an architec-
tural type exists in the form of a CTMC or DTMC. In order for an architectural
type to be performance closed, the basic condition to check is that no AET be-
havior contains a passive action whose type is not an interaction, and that every
set of attached local interactions contains one interaction whose associated rate
is exponential or immediate.

We conclude by referring the interested reader to [9, 16] for a precise definition
and examples of application of the architectural checks outlined in this section.

3.4 Families of Architectures and Hierarchical Modeling

An Æmilia description represents a family of architectures called an architec-
tural type. An architectural type is an intermediate abstraction between a single
architecture and an architectural style [66]. An important goal of the software
architecture discipline is the creation of an established and shared understanding
of the common forms of software design. Starting from the user requirements,
the designer should be able to identify a suitable organizational style, in or-
der to capitalize on codified principles and experience to specify, analyze, plan,
and monitor the construction of a system with high levels of efficiency and con-
fidence. An architectural style defines a family of systems having a common
vocabulary of components as well as a common topology and set of contraints
on the interactions among the components. As examples of architectural styles
we mention main program-subroutines, pipe-filter, client-server, and the layered
organization. Since an architectural style encompasses an entire family of soft-
ware systems, it is desirable to formalize the concept of architectural style both
to have a precise definition of the system family and to study the architectural
properties common to all the systems of the family. This is not a trivial task
because there are at least two degrees of freedom: variability of the component
topology and variability of the component internal behavior.

An architectural type is an approximation of an architectural style, where
the component topology and the component internal behavior can vary from in-
stance to instance of the architectural type in a controlled way, which preserves
the architectural checks. More precisely, all the instances of an architectural
type must have the same observable functional behavior and conforming topolo-
gies, while the internal behavior and the performance characteristics can freely
vary. An instance of an architectural type can be obtained by invoking the ar-
chitectural type and passing actual AETs preserving the observable functional
behavior of the formal AETs, an actual topology (actual AEIs, actual architec-
tural interactions, and actual attachments) that conforms to the formal topology,
actual names for the architectural interactions, and actual values for the numeric
parameters.

r oN : NetworkT

� �� �

� �� �
� �� � � �� �

� �� �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	

generate_request

accept_request

accept_outcome

generate_outcome

serve_itemserve_item

accept_item accept_item

accept_item

forwardreceive

forward receive

C : ClientT

serve_item

accept_item

S : ServerT

1forward_item forward_item2

0F : FilterT

1F : FilterT 2F : FilterT

P : PipeT

N : NetworkT

Fig. 2. Flow graph of ClientServer

archi type ClientServer(exp rate λ, δr, δo,
σ0, σ1, σ2, φ0, φ1, φ2, ρ0, ρ1, ρ2;

weight prouting)

archi elem types

elem type ClientT (exp rate λ)

behavior Client
∆
= <generate request , λ>.

<accept outcome, ∗>.Client
interactions output generate request

input accept outcome

elem type NetworkT (exp rate δ)

behavior Network
∆
= <receive, ∗>.<forward , δ>.Network

interactions input receive
output forward

elem type ServerT (exp rate σ0, σ1, σ2, φ0, φ1, φ2, ρ0, ρ1, ρ2;
weight prouting)

behavior Server
∆
= PipeFilter(; / ∗ actual AETs ∗ /

; / ∗ actual AEIs ∗ /
; / ∗ actual arch. interactions ∗ /
; / ∗ actual attachments ∗ /
accept request ,
generate outcome,
generate outcome;

σ0, σ1, σ2, φ0, φ1, φ2, ρ0, ρ1, ρ2,
prouting)

interactions input accept request
output generate outcome

archi topology

archi elem instances C : ClientT (λ)
Nr : NetworkT (δr)
No : NetworkT (δo)
S : ServerT (σ0, σ1, σ2, φ0, φ1, φ2, ρ0, ρ1, ρ2, prouting)

archi interactions

archi attachments from C.generate request to Nr.receive
from Nr.forward to S.accept request
from S.generate outcome to No.receive
from No.forward to C.accept outcome

end

Table 3. Textual description of ClientServer

The simplest form of architectural invocation is the one in which the actual
parameters coincide with the formal ones, in which case the actual parameters
are omitted for the sake of conciseness. The possibility of defining the behavior
of an AET through an architectural invocation as well as declaring architec-
tural interactions can be exploited to model a system architecture in a hier-
archical way. As an example, consider the pipe-filter organization of Table 2
and suppose that it is the architecture of the server of a client-server system.
The flow graph description of the resulting client-server system is depicted in
Fig. 2, while its textual description is reported in Table 3. The client descrip-
tion is parametrized w.r.t. the request generation rate λ, while the communi-
cation link description is parametrized w.r.t. the communication speed δ. As
can be observed, the behavior of the server is defined through an invocation
of the previously defined architectural type PipeFilter , where the actual names
accept request , generate outcome, and generate outcome substitute for the for-
mal architectural interactions F0.accept item, F1.serve item, and F2.serve item,
respectively.

A more complex form of architectural invocation is the one in which actual
AETs are passed that are different from the corresponding formal AETs. In this
case, we have to make sure that the actual AETs preserves the functional be-
havior determined by the formal ones. To this purpose, Æmilia is endowed with
an efficient behavioral conformity check based on the weak bisimulation equiv-
alence (together with a simple constraint on action rates) to verify whether an
architectural type invocation conforms to an architectural type definition, in the
sense that the architectural type invocation and the architectural type definition
have the same observable functional semantics up to some relabeling. The basic
condition to check is that the functional semantics of each actual AET is weakly
bisimulation equivalent to the functional semantics of the corresponding formal
AET up to some relabeling. This behavioral conformity check ensures that all
the correct instances of an architectural type possess the same compatibility, in-
teroperability, and performance closure properties. In other words, the outcome
of the application of the compatibility, interoperability, and performance closure
checks to the definition of an architectural type scales to all the behaviorally
conforming invocations of the architectural type.

The most complete form of architectural invocation is the one in which both
actual AETs and an actual topology are passed that are different from the
corresponding formal AETs and formal topology, respectively. In this case, we
have to additionally make sure that the actual topology conforms to the formal
topology. There are three kinds of admitted topological extensions, all of which
preserve the compatibility, interoperability, and performance closure properties
under some general conditions.

The first kind of topological extension is given by the extensible and/or
connections. As an example, consider the client-server system of Table 3. Every
instance of such an architectural type can admit a single client and a single
server, whereas it would be useful to allow for an arbitrary number of clients
(to be instantiated when invoking the architectural type) that can connect to

. . .

uniconn−andconnuniconn−uniconn uniconn−orconn
. . .

Fig. 3. Legal attachments in case of extensible and/or connections

the server. From the syntactical viewpoint, the extensible and/or connections are
introduced in Æmilia by further typing the interactions of the AETs. Besides the
input/output qualification, the interactions are classified as uniconn, andconn,
and orconn, with only the three types of attachments shown in Fig. 3 considered
legal. A uniconn interaction is an interaction to which a single AEI can be
attached; e.g., all the interactions of ClientServer are of this type. An andconn
interaction is an interaction to which a variable number of AEIs can be attached,
such that all the attached AEIs must synchronize when that interaction takes
place; e.g., a broadcast transmission. An orconn interaction is an interaction
to which a variable number of AEIs can be attached, such that only one of
the attached AEIs must synchronize when that interaction takes place; e.g., a
client-server system with several clients. Every output orconn interaction must
be declared to depend on one input orconn interaction, with the occurrences
of the two interactions alternating in the behavior of the AET that contains
them. On the semantic side, the treatment of uniconn and orconn interactions is
trivial. Instead, every occurrence of an input orconn interaction must be replaced
by a choice among as many indexed occurrences of that interaction as there are
attached AEIs, while every occurrence of an output orconn interaction must
be augmented with the same index given to the occurrence of the preceding
input orconn interaction on which it depends. Such modifications, which are
completely transparent to the designer, are necessary to reflect the fact that an
orconn interaction expresses a choice among different attached AEIs whenever
the interaction takes place.

The second kind of topological extension is given by the exogenous one. As
an example, consider the pipe-filter system of Table 2. Every instance of such an
architectural type can admit a single pipe connected to one upstream filter and
two downstream filters, whereas it would be desirable to be able to express by
means of that architectural type any pipe-filter system with an arbitrary number
of filters and pipes, such that every pipe is connected to one upstream filter and
two downstream filters. E.g., the flow graph in Fig. 4 should be considered as
a legal extension of the flow graph in Fig. 1. The idea behind the exogenous
extensions is that, since the architectural interactions of an architectural type
are the frontier of the whole architectural type, it is reasonable to extend the
architectural type at some of its architectural interactions with instances of the
already defined AETs, in a way that follows the prescribed topology.

1F : FilterT 2F : FilterT

0F : FilterT

forward_item1 2forward_item

� �
� �
� �� � � � �� � �

� �� �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �

�
��
��

	 	
	 	

 � � �� � �

� �� �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
� � � � � � � � � � � � �� � � � � � � � � � � � �

� �� �� �� �
� �� �� �

� �� �
� �� �� �� �

� �� �� �� �
� �� �� �

� �
� �� �� �� �� �
� �

� �� �
� �� �

accept_item

accept_item accept_item

serve_itemserve_item

serve_item

accept_item

forward_item1 2forward_item

accept_item accept_item

serve_itemserve_item

serve_item

accept_item

forward_item1 2forward_item

accept_item

F : FilterT F : FilterT F : FilterT F : FilterT3 4 5 6

P’ : PipeT P’’ : PipeT

accept_item

serve_item

accept_item

P : PipeT

Fig. 4. Flow graph of an exogenous extension of PipeFilter

The third kind of topological extension is given by the endogenous one. As an
example, consider the Æmilia description of a ring of stations each following the
same protocol: wait for a message from the previous station in the ring, process
the received message, and send the processed message to the next station in the
ring. Since such a protocol guarantees that only one station can transmit at a
given instant, the protocol can be considered as an abstraction of the IEEE 802.5
standard medium access control protocol for local area networks known as token
ring. One of the stations is designated to be the initial one, in the sense that it is
the first station allowed to send a message. Suppose that the Æmilia description
declares one instance of the initial station and three instances of the normal
station. Every instance of the architectural type, say Ring , can thus admit a
single initial station and three normal stations connected to form a ring, whereas
it would be desirable to be able to express by means of that architectural type
any ring system with an arbitrary number of normal stations. E.g., the flow graph
in Fig. 5 should be considered as a legal extension of the architectural type Ring .
The idea behind the endogenous extensions is that of replacing a set of AEIs with
a set of new instances of the already defined AETs, in a way that follows the
prescribed topology. In this case, we consider the frontier of the architectural
type w.r.t. one of the replaced AEIs to be the set of interactions previously
attached to the local interactions of the replaced AEI. On the other hand, all
the replacing AEIs that will be attached to the frontier of the architectural type
w.r.t. one of the replaced AEIs must be of the same type as the replaced AEI.

receive

receive

receive

receive

receive

IS : InitStationT

1S : StationT S : StationT3

send

send

send

2S’ : StationT 2

send

send
S’’ : StationT

Fig. 5. Flow graph of an endogenous extension of Ring

We conclude by referring the interested reader to [9, 16, 19, 20] for a precise
definition of the behavioral and topological conformity checks outlined in this
section.

4 Conclusion

In this paper we have recalled the basic notions and the main achievements in
the field of SPA and we have stressed its current transformation into a fully
fledged ADL for the compositional, graphical, hierarchical and controlled mod-
eling of complex systems as well as their functional verification and performance
evaluation. Such a transformation eases the modeling process and provides an
added value given by some architectural checks for detecting deadlock as well as
performance underspecification, which scale over families of architectures.

Concerning future work in the area of SPA based ADLs, first of all we mention
the importance of devising additional architectural checks on the performance
side, that provide diagnostic information like in the case of the compatibility and
interoperability checks. At the architectural level of design, it is extremely useful
to be able to reinterpret the performance results in terms of components and their
interactions. In order to achieve that, the performance must be calculated not
on a flat model like a MC, but on a model that maintains some correspondence
with the system structure, so that there is the possibility to localize bottlenecks.
Some work in this direction can be found in [9], where Æmilia descriptions are
translated into queueing network models.

Furthemore, SPA based ADLs should be viewed in the context of the whole
software life cycle. A link should be established from higher level notations like
UML, where requirements are expressed in a less formal way, as well as to object
oriented programming languages, aiming at the automatic generation of code
that possesses the functional and performance properties formally proved at the
architectural level.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, “Mod-
elling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995

2. A. Aldini, M. Bernardo, R. Gorrieri, “An Algebraic Model for Evaluating the
Performance of an ATM Switch with Explicit Rate Marking”, in Proc. of the 7th
Int. Workshop on Process Algebra and Performance Modelling (PAPM 1999),
Prensas Universitarias de Zaragoza, pp. 119-138, Zaragoza (Spain), 1999

3. A. Aldini, M. Bernardo, R. Gorrieri, M. Roccetti, “Comparing the QoS of Inter-
net Audio Mechanisms via Formal Methods”, in ACM Trans. on Modeling and
Computer Simulation 11:1-42, 2001

4. R. Allen, D. Garlan, “A Formal Basis for Architectural Connection”, in ACM
Trans. on Software Engineering and Methodology 6:213-249, 1997

5. J.C.M. Baeten, W.P. Weijland, “Process Algebra”, Cambridge University Press,
1990

6. C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, “On the Logical Charac-
terisation of Performability Properties”, in Proc. of the 27th Int. Coll. on Au-
tomata, Languages and Programming (ICALP 2000), LNCS 1853:780-792, Gen-
eve (Switzerland), 2000

7. C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, “Model Checking
Continuous-Time Markov Chains by Transient Analysis”, in Proc. of the 12th
Int. Conf. on Computer Aided Verification (CAV 2000), LNCS 1855:358-372,
Chicago (IL), 2000

8. C. Baier, J.-P. Katoen, H. Hermanns, “Approximate Symbolic Model Checking of
Continuous Time Markov Chains”, in Proc. of the 10th Int. Conf. on Concur-
rency Theory (CONCUR 1999), LNCS 1664:146-162, Eindhoven (The Nether-
lands), 1999

9. S. Balsamo, M. Bernardo, M. Simeoni, “Combining Stochastic Process Algebras
and Queueing Networks for Software Architecture Analysis”, to appear in Proc.
of the 3rd Int. Workshop on Software and Performance (WOSP 2002), Rome
(Italy), 2002

10. M. Bernardo, “Theory and Application of Extended Markovian Process Algebra”,
Ph.D. Thesis, University of Bologna (Italy), 1999

11. M. Bernardo, “A Simulation Analysis of Dynamic Server Selection Algorithms
for Replicated Web Services”, in Proc. of the 9th Int. Symp. on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS 2001), IEEE-CS Press, pp. 371-378, Cincinnati (OH), 2001

12. M. Bernardo, M. Bravetti, “Reward Based Congruences: Can We Aggre-
gate More?”, in Proc. of the 1st Joint Int. Workshop on Process Alge-
bra and Performance Modelling and Probabilistic Methods in Verification
(PAPM/PROBMIV 2001), LNCS 2165:136-151, Aachen (Germany), 2001

13. M. Bernardo, M. Bravetti, “Performance Measure Sensitive Congruences for
Markovian Process Algebras”, to appear in Theoretical Computer Science, 2002

14. M. Bernardo, N. Busi, M. Ribaudo, “Integrating TwoTowers and GreatSPN
through a Compact Net Semantics”, to appear in Performance Evaluation, 2002

15. M. Bernardo, P. Ciancarini, L. Donatiello, “ÆMPA: A Process Algebraic De-
scription Language for the Performance Analysis of Software Architectures”, in
Proc. of the 2nd Int. Workshop on Software and Performance (WOSP 2000),
ACM Press, pp. 1-11, Ottawa (Canada), 2000

16. M. Bernardo, P. Ciancarini, L. Donatiello, “Architecting Software Systems with
Process Algebras”, Tech. Rep. UBLCS-2001-07, University of Bologna (Italy),
2001

17. M. Bernardo, W.R. Cleaveland, “A Theory of Testing for Markovian Processes”,
in Proc. of the 11th Int. Conf. on Concurrency Theory (CONCUR 2000),
LNCS 1877:305-319, State College (PA), 2000

18. M. Bernardo, W.R. Cleaveland, W.S. Stewart, “TwoTowers 1.0 User Manual”,
http://www.sti.uniurb.it/bernardo/twotowers/, 2001

19. M. Bernardo, F. Franzè, “Architectural Types Revisited: Extensible And/Or Con-
nections”, in Proc. of the 5th Int. Conf. on Fundamental Approaches to Software
Engineering (FASE 2002), LNCS 2306:113-128, Grenoble (France), 2002

20. M. Bernardo, F. Franzè, “Exogenous and Endogenous Extensions of Architectural
Types”, in Proc. of the 5th Int. Conf. on Coordination Models and Languages
(COORDINATION 2002), LNCS 2315:40-55, York (UK), 2002

21. M. Bernardo, R. Gorrieri, M. Roccetti, “Formal Performance Modelling and
Evaluation of an Adaptive Mechanism for Packetised Audio over the Internet”,
in Formal Aspects of Computing 10:313-337, 1999

22. H. Bohnenkamp, “Compositional Solution of Stochastic Process Algebra Models”,
Ph.D. Thesis, RWTH Aachen (Germany), 2001

23. H. Bowman, J.W. Bryans, J. Derrick, “Analysis of a Multimedia Stream using
Stochastic Process Algebra”, in Proc. of the 6th Int. Workshop on Process Algebra
and Performance Modelling (PAPM 1998), pp. 51-69, Nice (France), 1998

24. J.T. Bradley, “Towards Reliable Modelling with Stochastic Process Algebras”,
Ph.D. Thesis, University of Bristol (UK), 1999

25. M. Bravetti, “Specification and Analysis of Stochastic Real-Time Systems”, Ph.D.
Thesis, University of Bologna (Italy), 2002

26. M. Bravetti, M. Bernardo, “Compositional Asymmetric Cooperations for Process
Algebras with Probabilities, Priorities, and Time”, in Proc. of the 1st Int. Work-
shop on Models for Time Critical Systems (MTCS 2000), Electronic Notes in
Theoretical Computer Science 39(3), State College (PA), 2000

27. P. Buchholz, “Markovian Process Algebra: Composition and Equivalence”, in
Proc. of the 2nd Int. Workshop on Process Algebra and Performance Modelling
(PAPM 1994), pp. 11-30, Erlangen (Germany), 1994

28. W.R. Cleaveland, J. Parrow, B. Steffen, “The Concurrency Workbench: A
Semantics-Based Tool for the Verification of Concurrent Systems”, in ACM
Trans. on Programming Languages and Systems 15:36-72, 1993

29. G. Clark, “Techniques for the Construction and Analysis of Algebraic Perfor-
mance Models”, Ph.D. Thesis, University of Edinburgh (UK), 2000

30. E.M. Clarke, O. Grumberg, D.A. Peled, “Model Checking”, MIT Press, 1999
31. P. D’Argenio, “Algebras and Automata for Timed and Stochastic Systems”, Ph.D.

Thesis, University of Twente (The Netherlands), 1999
32. R. De Nicola, M.C.B. Hennessy, “Testing Equivalences for Processes”, in Theo-

retical Computer Science 34:83-133, 1983
33. D. Ferrari, “Considerations on the Insularity of Performance Evaluation”, in

IEEE Trans. on Software Engineering 12:678-683, 1986
34. S. Gilmore, “The PEPA Workbench User Manual”,

http://www.dcs.ed.ac.uk/pepa/tools.html, 2001
35. S. Gilmore, J. Hillston, D.R.W. Holton, M. Rettelbach, “Specifications in

Stochastic Process Algebra for a Robot Control Problem”, in Journal of Pro-
duction Research 34:1065-1080, 1996

36. R.J. van Glabbeek, S.A. Smolka, B. Steffen, “Reactive, Generative and Stratified
Models of Probabilistic Processes”, in Information and Computation 121:59-80,
1995

37. R.J. van Glabbeek, F.W. Vaandrager, “Petri Net Models for Algebraic Theories
of Concurrency”, in Proc. of the Conf. on Parallel Architectures and Languages
Europe (PARLE 1987), LNCS 259:224-242, Eindhoven (The Netherlands), 1987

38. N. Götz, “Stochastische Prozeßalgebren – Integration von funktionalem Entwurf
und Leistungsbewertung Verteilter Systeme”, Ph.D. Thesis, University of Erlan-
gen (Germany), 1994

39. P.G. Harrison, J. Hillston, “Exploiting Quasi-Reversible Structures in Markovian
Process Algebra Models”, in Computer Journal 38:510-520, 1995

40. H. Hermanns, “Interactive Markov Chains”, Ph.D. Thesis, University of Erlangen
(Germany), 1998

41. H. Hermanns, U. Herzog, J. Hillston, V. Mertsiotakis, M. Rettelbach, “Stochas-
tic Process Algebras: Integrating Qualitative and Quantitative Modelling”, Tech.
Rep. 11/94, University of Erlangen (Germany), 1994

42. H. Hermanns, U. Herzog, V. Mertsiotakis, “Stochastic Process Algebras as a Tool
for Performance and Dependability Modelling”, in Proc. of the 1st IEEE Int.
Computer Performance and Dependability Symp. (IPDS 1995), IEEE-CS Press,
pp. 102-111, Erlangen (Germany), 1995

43. H. Hermanns, J.-P. Katoen, “Automated Compositional Markov Chain Gener-
ation for a Plain-Old Telephone System”, in Science of Computer Program-
ming 36:97-127, 2000

44. H. Hermanns, J. Meyer-Kayser, M. Siegle, “Multi Terminal Binary Decision
Diagrams to Represent and Analyse Continuous Time Markov Chains”, in
Proc. of the 3rd Int. Workshop on the Numerical Solution of Markov Chains
(NSMC 1999), Zaragoza (Spain), 1999

45. H. Hermanns, M. Rettelbach, “Syntax, Semantics, Equivalences, and Axioms for
MTIPP”, in Proc. of the 2nd Int. Workshop on Process Algebra and Performance
Modelling (PAPM 1994), pp. 71-87, Erlangen (Germany), 1994

46. U. Herzog, “Formal Description, Time and Performance Analysis – A Frame-
work”, in Entwurf und Betrieb verteilter Systeme, Informatik Fachberichte 264,
Springer, 1990

47. U. Herzog, “EXL: Syntax, Semantics and Examples”, Tech. Rep. 16/90, Univer-
sity of Erlangen (Germany), 1990

48. J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge
University Press, 1996

49. J. Hillston, N. Thomas, “Product Form Solution for a Class of PEPA Models”,
in Performance Evaluation 35:171-192, 1999

50. C.A.R. Hoare, “Communicating Sequential Processes”, Prentice Hall, 1985
51. D.R.W. Holton, “A PEPA Specification of an Industrial Production Cell”, in

Computer Journal 38:542-551, 1995
52. R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971
53. K. Kanani, “A Unified Framework for Systematic Quantitative and Qualitative

Analysis of Communicating Systems”, Ph.D. Thesis, Imperial College (UK), 1998
54. J.-P. Katoen “Quantitative and Qualitative Extensions of Event Structures”,

Ph.D. Thesis, University of Twente (The Netherlands), 1996
55. U. Klehmet, V. Mertsiotakis, “TIPPtool – User’s Guide”,

http://www7.informatik.uni-erlangen.de/tipp/tool.html, 1998
56. L. Kleinrock, “Queueing Systems”, John Wiley & Sons, 1975

57. K.G. Larsen, A. Skou, “Bisimulation through Probabilistic Testing”, in Informa-
tion and Computation 94:1-28, 1991

58. S.S. Lavenberg editor, “Computer Performance Modeling Handbook”, Academic
Press, 1983

59. V. Mertsiotakis, “Approximate Analysis Methods for Stochastic Process Alge-
bras”, Ph.D. Thesis, University of Erlangen (Germany), 1998

60. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989
61. D.E. Perry, A.L. Wolf, “Foundations for the Study of Software Architecture”, in

ACM SIGSOFT Software Engineering Notes 17:40-52, 1992
62. M. Rettelbach, “Stochastische Prozeßalgebren mit zeitlosen Aktivitäten und prob-

abilistischen Verzweigungen”, Ph.D. Thesis, University of Erlangen (Germany),
1996

63. M. Ribaudo, “On the Relationship between Stochastic Process Algebras and
Stochastic Petri Nets”, Ph.D. Thesis, University of Torino (Italy), 1995

64. P. Schweitzer, “Aggregation Methods for Large Markov Chains”, in Mathematical
Computer Performance and Reliability, North Holland, pp. 275-286, 1984

65. M. Sereno, “Towards a Product Form Solution for Stochastic Process Algebras”,
in Computer Journal 38:622-632, 1995

66. M. Shaw, D. Garlan, “Software Architecture: Perspectives on an Emerging Dis-
cipline”, Prentice Hall, 1996

67. M. Siegle, “Beschreibung und Analyse von Markovmodellen mit grossem Zus-
tandsraum”, Ph.D. Thesis, University of Erlangen (Germany), 1995

68. C.U. Smith, “Performance Engineering of Software Systems”, Addison-Wesley,
1990

69. W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994

70. B. Strulo, “Process Algebra for Discrete Event Simulation”, Ph.D. Thesis, Impe-
rial College (UK), 1994

